Multiterminal nonreciprocal routing in an optomechanical plaquette via synthetic magnetism

被引:2
作者
Tang, Zhi-Xiang [1 ,2 ]
Xu, Xun-Wei [1 ,2 ]
机构
[1] Hunan Normal Univ, Dept Phys, Key Lab Low Dimens Quantum Struct & Quantum Contro, Minist Educ,Key Lab Matter Microstruct & Funct Hun, Changsha 410081, Peoples R China
[2] Hunan Normal Univ, Synerget Innovat Ctr Quantum Effects & Applicat, Changsha 410081, Peoples R China
来源
NEW JOURNAL OF PHYSICS | 2023年 / 25卷 / 12期
基金
中国国家自然科学基金;
关键词
optomechanical plaquette; nonreciprocal routing; synthetic magnetism; NON-RECIPROCITY; SYSTEM; OUTPUT;
D O I
10.1088/1367-2630/ad121d
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Optomechanical systems with parametric coupling between optical (photon) and mechanical (phonon) modes provide a useful platform to realize various magnetic-free nonreciprocal devices, such as isolators, circulators, and directional amplifiers. However, nonreciprocal router with multiaccess channels has not been extensively studied yet. Here, we propose a nonreciprocal router with one transmitter, one receiver, and two output terminals, based on an optomechanical plaquette composing of two optical modes and two mechanical modes. The time-reversal symmetry of the system is broken via synthetic magnetism induced by driving the two optical modes with phase-correlated laser fields. The prerequisites for nonreciprocal routing are obtained both analytically and numerically, and the robustness of the nonreciprocity is demonstrated numerically. Multiterminal nonreciprocal router in optomechanical plaquette provides a useful quantum node for development of quantum network information security and realization of quantum secure communication.
引用
收藏
页数:13
相关论文
共 89 条
  • [1] Optomechanical systems as single-photon routers
    Agarwal, G. S.
    Huang, Sumei
    [J]. PHYSICAL REVIEW A, 2012, 85 (02):
  • [2] Efficient Routing of Single Photons by One Atom and a Microtoroidal Cavity
    Aoki, Takao
    Parkins, A. S.
    Alton, D. J.
    Regal, C. A.
    Dayan, Barak
    Ostby, E.
    Vahala, K. J.
    Kimble, H. J.
    [J]. PHYSICAL REVIEW LETTERS, 2009, 102 (08)
  • [3] Cavity optomechanics
    Aspelmeyer, Markus
    Kippenberg, Tobias J.
    Marquardt, Florian
    [J]. REVIEWS OF MODERN PHYSICS, 2014, 86 (04) : 1391 - 1452
  • [4] Mechanical on-chip microwave circulator
    Barzanjeh, S.
    Wulf, M.
    Peruzzo, M.
    Kalaee, M.
    Dieterle, P. B.
    Painter, O.
    Fink, J. M.
    [J]. NATURE COMMUNICATIONS, 2017, 8
  • [5] Optomechanics for quantum technologies
    Barzanjeh, Shabir
    Xuereb, Andre
    Groeblacher, Simon
    Paternostro, Mauro
    Regal, Cindy A.
    Weig, Eva M.
    [J]. NATURE PHYSICS, 2022, 18 (01) : 15 - 24
  • [6] Manipulating the Flow of Thermal Noise in Quantum Devices
    Barzanjeh, Shabir
    Aquilina, Matteo
    Xuereb, Andre
    [J]. PHYSICAL REVIEW LETTERS, 2018, 120 (06)
  • [7] Nonreciprocal reconfigurable microwave optomechanical circuit
    Bernier, N. R.
    Toth, L. D.
    Koottandavida, A.
    Ioannou, M. A.
    Malz, D.
    Nunnenkamp, A.
    Feofanov, A. K.
    Kippenberg, T. J.
    [J]. NATURE COMMUNICATIONS, 2017, 8
  • [8] Born M., 1999, PRINCIPLES OPTICS EL
  • [9] Enhanced nonlinear optomechanics in a coupled-mode photonic crystal device
    Burgwal, Roel
    Verhagen, Ewold
    [J]. NATURE COMMUNICATIONS, 2023, 14 (01)
  • [10] Electromagnetic Nonreciprocity
    Caloz, Christophe
    Alu, Andrea
    Tretyakov, Sergei
    Sounas, Dimitrios
    Achouri, Karim
    Deck-Leger, Zoe-Lise
    [J]. PHYSICAL REVIEW APPLIED, 2018, 10 (04):