Design and assessment on a bottom-cut shape for latent heat storage tank filled with metal foam

被引:7
作者
Hu, Rukun [1 ]
Huang, Xinyu [1 ]
Gao, Xinyu [1 ]
Lu, Liu [1 ]
Yang, Xiaohu [1 ]
Sund, Bengt [2 ]
机构
[1] Xi An Jiao Tong Univ, Inst Bldg Environm & Sustainabil Technol, Sch Human Settlements & Civil Engn, Xian 710049, Peoples R China
[2] Lund Univ, S-22100 Lund, Sweden
基金
中国国家自然科学基金;
关键词
Metal foam; Numerical simulation; Spatial distribution; Bottom cross -cut; Natural convection; PHASE-CHANGE MATERIAL; THERMAL-ENERGY STORAGE; PERFORMANCE; POROSITY; UNIT; ENHANCEMENT;
D O I
10.1016/j.ijthermalsci.2023.108757
中图分类号
O414.1 [热力学];
学科分类号
摘要
The utilization of phase change materials (PCMs) holds tremendous potential of heat storage domain. The PCM's refractory at the latent heat thermal energy storage (LHTES) unit bottom hinders the heat storage efficiency, despite the significant improvement in thermal conductivity achieved through the addition of metal foam. This study employs numerical simulation to examine the impact of applying bottom cross-cut on PCM's spatial distribution in a horizontal LHTES unit. The manuscript analyzes parameters including melting fraction, complete melting time, Rayleigh number, natural convection heat transfer gain, melting phase interface, velocity and temperature distributions, and heat storage. The findings indicate that the proximity to the heating tube results in a reduction of solid volume at the LHTES unit bottom. A 0.6 bottom cross-cut ratio leads to an 18.84 % faster heat storage rate compared to a concentric-circle unit. Furthermore, a bottom cross-cut ratio of 0.5 enhances natural convection heat transfer gain by 3.28 times.
引用
收藏
页数:17
相关论文
共 65 条
[51]  
[杨绪青 Yang Xuqing], 2021, [储能科学与技术, Energy Storage Science and Technology], V10, P362
[52]   Direct Simulation of Interstitial Heat Transfer Coefficient Between Paraffin and High Porosity Open-Cell Metal Foam [J].
Yao, Yuanpeng ;
Wu, Huiying ;
Liu, Zhenyu .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2018, 140 (03)
[53]   Numerical simulation on phase-change thermal storage/release in a plate-fin unit [J].
Ye, Wei-Biao ;
Zhu, Dong-Sheng ;
Wang, Nan .
APPLIED THERMAL ENGINEERING, 2011, 31 (17-18) :3871-3884
[54]   Numerical simulation on thermal behavior of partially filled metal foam composite phase change materials [J].
Ying, Qifan ;
Wang, Hui ;
Lichtfouse, Eric .
APPLIED THERMAL ENGINEERING, 2023, 229
[55]   Effect of installation angle of fins on melting characteristics of annular unit for latent heat thermal energy storage [J].
Yuan, Yanping ;
Cao, Xiaoling ;
Xiang, Bo ;
Du, Yanxia .
SOLAR ENERGY, 2016, 136 :365-378
[56]   Hybrid thermal performance enhancement of a circular latent heat storage system by utilizing partially filled copper foam and Cu/GO nano-additives [J].
Zadeh, Seyed Mohsen Hashem ;
Mehryan, S. A. M. ;
Ghalambaz, Mohammad ;
Ghodrat, Maryam ;
Young, John ;
Chamkha, Ali .
ENERGY, 2020, 213
[57]   Numerical study of an oscillatory piston-driven flow through open cell metal foam like stirling engine regenerator [J].
Zahi, Nesrine ;
Alkabsh, Asma ;
Bouhjar, Feriel ;
Derbali, Lotfi .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2023, 213
[58]   Melting heat transfer characteristics of a composite phase change material fabricated by paraffin and metal foam [J].
Zhang, P. ;
Meng, Z. N. ;
Zhu, H. ;
Wang, Y. L. ;
Peng, S. P. .
APPLIED ENERGY, 2017, 185 :1971-1983
[59]   Three-dimensional numerical investigation on melting performance of phase change material composited with copper foam in local thermal non-equilibrium containing an internal heater [J].
Zhang, Xiaochun ;
Su, Guokai ;
Lin, Junjiang ;
Liu, Aihua ;
Wang, Changhong ;
Zhuang, Yijie .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2021, 170
[60]   Modeling metal foam enhanced phase change heat transfer in thermal energy storage by using phase field method [J].
Zhao, Y. ;
Zhao, C. Y. ;
Xu, Z. G. ;
Xu, H. J. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2016, 99 :170-181