Design and assessment on a bottom-cut shape for latent heat storage tank filled with metal foam

被引:7
作者
Hu, Rukun [1 ]
Huang, Xinyu [1 ]
Gao, Xinyu [1 ]
Lu, Liu [1 ]
Yang, Xiaohu [1 ]
Sund, Bengt [2 ]
机构
[1] Xi An Jiao Tong Univ, Inst Bldg Environm & Sustainabil Technol, Sch Human Settlements & Civil Engn, Xian 710049, Peoples R China
[2] Lund Univ, S-22100 Lund, Sweden
基金
中国国家自然科学基金;
关键词
Metal foam; Numerical simulation; Spatial distribution; Bottom cross -cut; Natural convection; PHASE-CHANGE MATERIAL; THERMAL-ENERGY STORAGE; PERFORMANCE; POROSITY; UNIT; ENHANCEMENT;
D O I
10.1016/j.ijthermalsci.2023.108757
中图分类号
O414.1 [热力学];
学科分类号
摘要
The utilization of phase change materials (PCMs) holds tremendous potential of heat storage domain. The PCM's refractory at the latent heat thermal energy storage (LHTES) unit bottom hinders the heat storage efficiency, despite the significant improvement in thermal conductivity achieved through the addition of metal foam. This study employs numerical simulation to examine the impact of applying bottom cross-cut on PCM's spatial distribution in a horizontal LHTES unit. The manuscript analyzes parameters including melting fraction, complete melting time, Rayleigh number, natural convection heat transfer gain, melting phase interface, velocity and temperature distributions, and heat storage. The findings indicate that the proximity to the heating tube results in a reduction of solid volume at the LHTES unit bottom. A 0.6 bottom cross-cut ratio leads to an 18.84 % faster heat storage rate compared to a concentric-circle unit. Furthermore, a bottom cross-cut ratio of 0.5 enhances natural convection heat transfer gain by 3.28 times.
引用
收藏
页数:17
相关论文
共 65 条
[1]  
Anandan S.S., 2021, Util. Environ. Eff., V24
[2]   Heat transfer enhancement of modular thermal energy storage unit for reversible heat pump cooperation [J].
Andrzejczyk, R. ;
Muszynski, T. ;
Fabrykiewicz, M. ;
Rogowski, M. .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2023, 193
[3]   Thermal analysis of micro-encapsulated phase change material (MEPCM)-based units integrated into a commercial water tank for cold thermal energy storage [J].
Bianco, Nicola ;
Caliano, Martina ;
Fragnito, Andrea ;
Iasiello, Marcello ;
Mauro, Gerardo Maria ;
Mongibello, Luigi .
ENERGY, 2023, 266
[4]   Numerical study on latent thermal energy storage systems with aluminum foam in local thermal equilibrium [J].
Buonomo, Bernardo ;
Celik, Hasan ;
Ercole, Davide ;
Manca, Oronzio ;
Mobedi, Moghtada .
APPLIED THERMAL ENGINEERING, 2019, 159
[5]  
Cabeza L.F., 2021, Advances in thermal energy storage systems, P37, DOI DOI 10.1016/B978-0-12-819885-8.00002-4
[6]   Analysis of a phase change material-based unit and of an aluminum foam/phase change material composite-based unit for cold thermal energy storage by numerical simulation [J].
Caliano, Martina ;
Bianco, Nicola ;
Graditi, Giorgio ;
Mongibello, Luigi .
APPLIED ENERGY, 2019, 256
[7]   Forced convection in high porosity metal foams [J].
Calmidi, VV ;
Mahajan, RL .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2000, 122 (03) :557-565
[8]   Phase change heat transfer in an L-shape heatsink occupied with paraffin-copper metal foam [J].
Chamkha, Ali ;
Veismoradi, Ali ;
Ghalambaz, Mohammad ;
Talebizadehsardari, Pouyan .
APPLIED THERMAL ENGINEERING, 2020, 177
[9]   Performance prediction of a fin-metal foam-cold thermal energy storage device: Solidification [J].
Chen, Chuanqi ;
Diao, Yanhua ;
Zhao, Yaohua ;
Zhu, Tingting ;
Wang, Zhen ;
Han, Yifa ;
Liu, Yutong .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2023, 202
[10]   Experimental thermal study of solar salt and subcritical pressure water in a shell and tube heat exchanger [J].
Dong, Xinyu ;
Zhang, Shulei ;
Liu, Lu ;
Zhang, Yuxuan .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2023, 186