Multiplexed superconducting qubit control at millikelvin temperatures with a low-power cryo-CMOS multiplexer

被引:13
作者
Acharya, R. [1 ,2 ]
Brebels, S. [1 ]
Grill, A. [1 ]
Verjauw, J. [1 ,3 ]
Ivanov, Ts. [1 ]
Lozano, D. Perez [1 ]
Wan, D. [1 ]
Van Damme, J. [1 ,2 ]
Vadiraj, A. M. [1 ]
Mongillo, M. [1 ]
Govoreanu, B. [1 ]
Craninckx, J. [1 ]
Radu, I. P. [1 ,4 ]
De Greve, K. [1 ,2 ]
Gielen, G. [1 ,2 ]
Catthoor, F. [1 ,2 ]
Potocnik, A. [1 ]
机构
[1] IMEC, Leuven, Belgium
[2] Katholieke Univ Leuven, Dept Elect Engn ESAT, Leuven, Belgium
[3] Katholieke Univ Leuven, Dept Mat Engn MTM, Leuven, Belgium
[4] Taiwan Semicond Mfg Co, Corp Res, Hsinchu, Taiwan
关键词
QUANTUM ADVANTAGE; READOUT; NOISE;
D O I
10.1038/s41928-023-01033-8
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Large-scale superconducting quantum computers require the high-fidelity control and readout of large numbers of qubits at millikelvin temperatures, resulting in a massive input-output bottleneck. Cryo-electronics based on complementary metal-oxide-semiconductor technology could provide a scalable and versatile solution. However, detrimental effects due to cross-coupling between the qubits and the electronic and thermal noise generated during cryo-electronics operation need to be avoided. Here we report a low-power radio-frequency multiplexing cryo-electronics system that operates below 15 mK with a minimal cross-coupling. We benchmark its performance by interfacing the system with a superconducting qubit and observe that the qubit's relaxation times are unaffected, whereas the coherence times are marginally affected in both static and dynamic operations. Using the multiplexer, single-qubit gate fidelities above 99.9%-that is, above the threshold for surface-code-based quantum error correction-can be achieved with appropriate thermal filtering. We also demonstrate time-division multiplexing capabilities by dynamically windowing calibrated qubit control pulses. A low-power radio-frequency multiplexing cryo-electronics system, which is based on complementary metal-oxide-semiconductor technology, can operate below 15 mK and provide the control and interfacing of superconducting qubits with minimal cross-coupling.
引用
收藏
页码:900 / 909
页数:12
相关论文
共 64 条
  • [1] Cryogenic on-chip multiplexer for the study of quantum transport in 256 split-gate devices
    Al-Taie, H.
    Smith, L. W.
    Xu, B.
    See, P.
    Griffiths, J. P.
    Beere, H. E.
    Jones, G. A. C.
    Ritchie, D. A.
    Kelly, M. J.
    Smith, C. G.
    [J]. APPLIED PHYSICS LETTERS, 2013, 102 (24)
  • [2] Quantum supremacy using a programmable superconducting processor
    Arute, Frank
    Arya, Kunal
    Babbush, Ryan
    Bacon, Dave
    Bardin, Joseph C.
    Barends, Rami
    Biswas, Rupak
    Boixo, Sergio
    Brandao, Fernando G. S. L.
    Buell, David A.
    Burkett, Brian
    Chen, Yu
    Chen, Zijun
    Chiaro, Ben
    Collins, Roberto
    Courtney, William
    Dunsworth, Andrew
    Farhi, Edward
    Foxen, Brooks
    Fowler, Austin
    Gidney, Craig
    Giustina, Marissa
    Graff, Rob
    Guerin, Keith
    Habegger, Steve
    Harrigan, Matthew P.
    Hartmann, Michael J.
    Ho, Alan
    Hoffmann, Markus
    Huang, Trent
    Humble, Travis S.
    Isakov, Sergei V.
    Jeffrey, Evan
    Jiang, Zhang
    Kafri, Dvir
    Kechedzhi, Kostyantyn
    Kelly, Julian
    Klimov, Paul V.
    Knysh, Sergey
    Korotkov, Alexander
    Kostritsa, Fedor
    Landhuis, David
    Lindmark, Mike
    Lucero, Erik
    Lyakh, Dmitry
    Mandra, Salvatore
    McClean, Jarrod R.
    McEwen, Matthew
    Megrant, Anthony
    Mi, Xiao
    [J]. NATURE, 2019, 574 (7779) : 505 - +
  • [3] Design and Characterization of a 28-nm Bulk-CMOS Cryogenic Quantum Controller Dissipating Less Than 2 mW at 3 K
    Bardin, Joseph C.
    Jeffrey, Evan
    Lucero, Erik
    Huang, Trent
    Das, Sayan
    Sank, Daniel Thomas
    Naaman, Ofer
    Megrant, Anthony Edward
    Barends, Rami
    White, Ted
    Giustina, Marissa
    Satzinger, Kevin J.
    Arya, Kunal
    Roushan, Pedram
    Chiaro, Benjamin
    Kelly, Julian
    Chen, Zijun
    Burkett, Brian
    Chen, Yu
    Dunsworth, Andrew
    Fowler, Austin
    Foxen, Brooks
    Gidney, Craig
    Graff, Rob
    Klimov, Paul
    Mutus, Josh
    McEwen, Matthew J.
    Neeley, Matthew
    Neill, Charles J.
    Quintana, Chris
    Vainsencher, Amit
    Neven, Hartmut
    Martinis, John
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2019, 54 (11) : 3043 - 3060
  • [4] Characterization and modeling of 28-nm FDSOI CMOS technology down to cryogenic temperatures
    Beckers, Arnout
    Jazaeri, Farzan
    Bohuslayskyi, Heorhii
    Hutin, Louis
    De Franceschi, Silvano
    Enz, Christian
    [J]. SOLID-STATE ELECTRONICS, 2019, 159 : 106 - 115
  • [5] Circuit quantum electrodynamics
    Blais, Alexandre
    Grimsmo, Arne L.
    Girvin, S. M.
    Wallraffe, Andreas
    [J]. REVIEWS OF MODERN PHYSICS, 2021, 93 (02)
  • [6] Quantum advantage with shallow circuits
    Bravyi, Sergey
    Gosset, David
    Koenig, Robert
    [J]. SCIENCE, 2018, 362 (6412) : 308 - +
  • [7] Trapped-ion quantum computing: Progress and challenges
    Bruzewicz, Colin D.
    Chiaverini, John
    McConnell, Robert
    Sage, Jeremy M.
    [J]. APPLIED PHYSICS REVIEWS, 2019, 6 (02)
  • [8] Chen Z., 2018, Ph.D. thesis
  • [9] Introduction to quantum noise, measurement, and amplification
    Clerk, A. A.
    Devoret, M. H.
    Girvin, S. M.
    Marquardt, Florian
    Schoelkopf, R. J.
    [J]. REVIEWS OF MODERN PHYSICS, 2010, 82 (02) : 1155 - 1208
  • [10] Exploiting Dynamic Quantum Circuits in a Quantum Algorithm with Superconducting Qubits
    Corcoles, A. D.
    Takita, Maika
    Inoue, Ken
    Lekuch, Scott
    Minev, Zlatko K.
    Chow, Jerry M.
    Gambetta, Jay M.
    [J]. PHYSICAL REVIEW LETTERS, 2021, 127 (10)