LTransformer: A Transformer-Based Framework for Task Offloading in Vehicular Edge Computing

被引:0
作者
Yang, Yichi [1 ]
Yan, Ruibin [1 ]
Gu, Yijun [1 ]
机构
[1] Peoples Publ Secur Univ China, Coll Informat & Cyber Secur, Beijing 102600, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 18期
关键词
edge computing; task offloading; trajectory prediction; deep learning; NETWORKS;
D O I
10.3390/app131810232
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Vehicular edge computing (VEC) is essential in vehicle applications such as traffic control and in-vehicle services. In the task offloading process of VEC, predictive-mode transmission based on deep learning is constrained by limited computational resources. Furthermore, the accuracy of deep learning algorithms in VEC is compromised due to the lack of edge computing features in algorithms. To solve these problems, this paper proposes a task offloading optimization approach that enables edge servers to store deep learning models. Moreover, this paper proposes the LTransformer, a transformer-based framework that incorporates edge computing features. The framework consists of pre-training, an input module, an encoding-decoding module, and an output module. Compared with four sequential deep learning methods, namely a Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), a Gated Recurrent Unit (GRU), and the Transformer, the LTransformer achieves the highest accuracy, reaching 80.1% on the real dataset. In addition, the LTransformer achieves 0.008 s when predicting a single trajectory, fully satisfying the fundamental requirements of real-time prediction and enabling task offloading optimization.
引用
收藏
页数:18
相关论文
共 28 条
[11]  
Levskaya A, 2020, arXiv, DOI DOI 10.48550/ARXIV.2001.04451
[12]   Vehicular Edge Computing and Networking: A Survey [J].
Liu, Lei ;
Chen, Chen ;
Pei, Qingqi ;
Maharjan, Sabita ;
Zhang, Yan .
MOBILE NETWORKS & APPLICATIONS, 2021, 26 (03) :1145-1168
[13]  
Liu T., 2019, P 2019 INT C MULTIME
[14]   Resource Scheduling in Edge Computing: A Survey [J].
Luo, Quyuan ;
Hu, Shihong ;
Li, Changle ;
Li, Guanghui ;
Shi, Weisong .
IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2021, 23 (04) :2131-2165
[15]  
Monreale A, 2009, KDD-09: 15TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P637
[16]   DRL-Based Dependent Task Offloading Strategies with Multi-Server Collaboration in Multi-Access Edge Computing [J].
Peng, Biying ;
Li, Taoshen ;
Chen, Yan .
APPLIED SCIENCES-BASEL, 2023, 13 (01)
[17]   Task offloading in Edge and Cloud Computing: A survey on mathematical, artificial intelligence and control theory solutions [J].
Saeik, Firdose ;
Avgeris, Marios ;
Spatharakis, Dimitrios ;
Santi, Nina ;
Dechouniotis, Dimitrios ;
Violos, John ;
Leivadeas, Aris ;
Athanasopoulos, Nikolaos ;
Mitton, Nathalie ;
Papavassiliou, Symeon .
COMPUTER NETWORKS, 2021, 195
[18]  
Wang SN, 2020, Arxiv, DOI arXiv:2006.04768
[19]   UB-LSTM: A Trajectory Prediction Method Combined with Vehicle Behavior Recognition [J].
Xiao, Haipeng ;
Wang, Chaoqun ;
Li, Zhixiong ;
Wang, Rendong ;
Bo, Cao ;
Sotelo, Miguel Angel ;
Xu, Youchun .
JOURNAL OF ADVANCED TRANSPORTATION, 2020, 2020
[20]   Trajectory prediction for intelligent vehicles using spatial-attention mechanism [J].
Yan, Jun ;
Peng, Zifeng ;
Yin, Huilin ;
Wang, Jie ;
Wang, Xiao ;
Shen, Yuesong ;
Stechele, Walter ;
Cremers, Daniel .
IET INTELLIGENT TRANSPORT SYSTEMS, 2020, 14 (13) :1855-1863