In-depth analysis of design & development for sensor-based human activity recognition system

被引:3
作者
Choudhury, Nurul Amin [1 ]
Soni, Badal [1 ]
机构
[1] Natl Inst Technol Silchar, Dept Comp Sci & Engn, Cachar 788010, Assam, India
关键词
Human activity recognition; Shallow learning; Ensemble learning; Deep learning; Activities of daily living and wearable sensors; ACCELEROMETER; FRAMEWORK;
D O I
10.1007/s11042-023-16423-5
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Human Activity Recognition (HAR) has gained much attention since sensor technology has become more advanced and cost-effective. HAR is a process of identifying the daily living activities of an individual with the help of an efficient learning algorithm and prospective user-generated datasets. This paper addresses the technical advancement and classification of HAR systems in detail. Design issues, future opportunities, recent state-of-the-art related works, and a generic framework for activity recognition are discussed in a comprehensive manner with analytical discussion. Different publicly available datasets with their features and incorporated sensors are also descr-processing techniques with various performance metrics like - Accuracy, F1-score, Precision, Recall, Computational times and evaluation schemes are discussed for the comprehensive understanding of the Activity Recognition Chain (ARC). Different learning algorithms are exploited and compared for learning-based performance comparison. For each specific module of this paper, a compendious number of references is also cited for easy referencing. The main aim of this study is to give the readers an easy hands-on implementation in the field of HAR with verifiable evidence of different design issues.
引用
收藏
页码:73233 / 73272
页数:40
相关论文
共 50 条
  • [21] SenseMLP: a parallel MLP architecture for sensor-based human activity recognition
    Li, Weilin
    Guo, Jiaming
    Wu, Hong
    MULTIMEDIA SYSTEMS, 2024, 30 (04)
  • [22] Wearable Sensor-Based Human Activity Recognition System Employing Bi-LSTM Algorithm
    Tehrani, Amir
    Yadollahzadeh-Tabari, Meisam
    Zehtab-Salmasi, Aidin
    Enayatifar, Rasul
    COMPUTER JOURNAL, 2023, 67 (03) : 961 - 975
  • [23] AutoAugHAR: Automated Data Augmentation for Sensor-based Human Activity Recognition
    Zhou, Yexu
    Zhao, Haibin
    Huang, Yiran
    Roeddiger, Tobias
    Kurnaz, Murat
    Riedel, Till
    Beigl, Michael
    PROCEEDINGS OF THE ACM ON INTERACTIVE MOBILE WEARABLE AND UBIQUITOUS TECHNOLOGIES-IMWUT, 2024, 8 (02):
  • [24] Training Classifiers with Shadow Features for Sensor-Based Human Activity Recognition
    Fong, Simon
    Song, Wei
    Cho, Kyungeun
    Wong, Raymond
    Wong, Kelvin K. L.
    SENSORS, 2017, 17 (03)
  • [25] A Practical Wearable Sensor-based Human Activity Recognition Research Pipeline
    Liu, Hui
    Hartmann, Yale
    Schultz, Tanja
    HEALTHINF: PROCEEDINGS OF THE 15TH INTERNATIONAL JOINT CONFERENCE ON BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES - VOL 5: HEALTHINF, 2021, : 847 - 856
  • [26] A Hybrid Deep Neural Networks for Sensor-based Human Activity Recognition
    Wang, Shujuan
    Zhu, Xiaoke
    2020 12TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATIONAL INTELLIGENCE (ICACI), 2020, : 486 - 491
  • [27] LOCAL AND GLOBAL ALIGNMENTS FOR GENERALIZABLE SENSOR-BASED HUMAN ACTIVITY RECOGNITION
    Lu, Wang
    Wang, Jindong
    Chen, Yiqiang
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 3833 - 3837
  • [28] Automatic Labeling Framework for Wearable Sensor-based Human Activity Recognition
    Liang, Guanhao
    Luo, Qingsheng
    Jia, Yan
    SENSORS AND MATERIALS, 2018, 30 (09) : 2049 - 2071
  • [29] Subject variability in sensor-based activity recognition
    Ali Olow Jimale
    Mohd Halim Mohd Noor
    Journal of Ambient Intelligence and Humanized Computing, 2023, 14 : 3261 - 3274
  • [30] Human motion recognition using a wireless sensor-based wearable system
    John Paul Varkey
    Dario Pompili
    Theodore A. Walls
    Personal and Ubiquitous Computing, 2012, 16 : 897 - 910