Online inference with debiased stochastic gradient descent

被引:6
作者
Han, Ruijian [1 ]
Luo, Lan [2 ]
Lin, Yuanyuan [3 ]
Huang, Jian [1 ]
机构
[1] Hong Kong Polytech Univ, Dept Appl Math, Kowloon, Hung Hom, 11 Yuk Choi Rd, Hong Kong 999077, Peoples R China
[2] Rutgers Sch Publ Hlth, Dept Biostat & Epidemiol, 683 Hoes Lane West, Piscataway, NJ 08854 USA
[3] Chinese Univ Hong Kong, Dept Stat, Shatin, Cent Ave, Hong Kong 999077, Peoples R China
基金
中国国家自然科学基金;
关键词
Confidence interval; High-dimensional statistics; Online learning; Stochastic gradient descent; CONFIDENCE-INTERVALS; APPROXIMATION; PARAMETERS;
D O I
10.1093/biomet/asad046
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We propose a debiased stochastic gradient descent algorithm for online statistical inference with high-dimensional data. Our approach combines the debiasing technique developed in high-dimensional statistics with the stochastic gradient descent algorithm. It can be used to construct confidence intervals efficiently in an online fashion. Our proposed algorithm has several appealing aspects: as a one-pass algorithm, it reduces the time complexity; in addition, each update step requires only the current data together with the previous estimate, which reduces the space complexity. We establish the asymptotic normality of the proposed estimator under mild conditions on the sparsity level of the parameter and the data distribution. Numerical experiments demonstrate that the proposed debiased stochastic gradient descent algorithm attains nominal coverage probability. Furthermore, we illustrate our method with analysis of a high-dimensional text dataset.
引用
收藏
页码:93 / 108
页数:16
相关论文
共 50 条
  • [41] Analysis of stochastic gradient descent in continuous time
    Latz, Jonas
    [J]. STATISTICS AND COMPUTING, 2021, 31 (04)
  • [42] Ant colony optimization and stochastic gradient descent
    Meuleau, N
    Dorigo, M
    [J]. ARTIFICIAL LIFE, 2002, 8 (02) : 103 - 121
  • [43] Distributed stochastic gradient descent with discriminative aggregating
    Chen, Zhen-Hong
    Lan, Yan-Yan
    Guo, Jia-Feng
    Cheng, Xue-Qi
    [J]. Jisuanji Xuebao/Chinese Journal of Computers, 2015, 38 (10): : 2054 - 2063
  • [44] The Impact of Synchronization in Parallel Stochastic Gradient Descent
    Backstrom, Karl
    Papatriantafilou, Marina
    Tsigas, Philippas
    [J]. DISTRIBUTED COMPUTING AND INTELLIGENT TECHNOLOGY, ICDCIT 2022, 2022, 13145 : 60 - 75
  • [45] Stochastic Gradient Descent Meets Distribution Regression
    Muecke, Nicole
    [J]. 24TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS (AISTATS), 2021, 130
  • [46] Fuzzy Kernel Stochastic Gradient Descent Machines
    Tuan Nguyen
    Phuong Duong
    Trung Le
    Anh Le
    Viet Ngo
    Dat Tran
    Ma, Wanli
    [J]. 2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 3226 - 3232
  • [47] Optimal stochastic gradient descent algorithm for filtering
    Turali, M. Yigit
    Koc, Ali T.
    Kozat, Suleyman S.
    [J]. DIGITAL SIGNAL PROCESSING, 2024, 155
  • [48] Stochastic gradient descent for barycenters in Wasserstein space
    Backhoff, Julio
    Fontbona, Joaquin
    Rios, Gonzalo
    Tobar, Felipe
    [J]. JOURNAL OF APPLIED PROBABILITY, 2025, 62 (01) : 15 - 43
  • [49] A note on diffusion limits for stochastic gradient descent
    Lanconelli, Alberto
    Lauria, Christopher S. A.
    [J]. JOURNAL OF APPROXIMATION THEORY, 2025, 309
  • [50] Online learning via congregational gradient descent
    Blackmore, RL
    Williamson, RC
    Mareels, IMY
    Sethares, WA
    [J]. MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 1997, 10 (04) : 331 - 363