4D printing of liquid crystal elastomers (LCEs) via direct ink writing has opened up great opportunities to create stimuli-responsive actuations for applications such as soft robotics. However, most 4D-printed LCEs are limited to thermal actuation and fixed shape morphing, posing a challenge for achieving multiple programmable functionalities and reprogrammability. Here, a 4D-printable photochromic titanium-based nanocrystal (TiNC)/LCE composite ink is developed, which enables the reprogrammable photochromism and photoactuation of a single 4D-printed architecture. The printed TiNC/LCE composite exhibits reversible color-switching between white and black in response to ultraviolet (UV) irradiation and oxygen exposure. Upon near-infrared (NIR) irradiation, the UV-irradiated region can undergo photothermal actuation, allowing for robust grasping and weightlifting. By precisely controlling the structural design and the light irradiation, the single 4D-printed TiNC/LCE object can be globally or locally programmed, erased, and reprogrammed to achieve desirable photocontrollable color patterns and 3D structure constructions, such as barcode patterns and origami- and kirigami-inspired structures. This work provides a novel concept for designing and engineering adaptive structures with unique and tunable multifunctionalities, which have potential applications in biomimetic soft robotics, smart construction engineering, camouflage, multilevel information storage, etc. A 4D printable photochromic titanium-based nanocrystal (TiNC)/liquid crystal elastomer (LCE) composite ink is developed, which enables reprogrammable photochromism and photoactuation of a single 4D-printed TiNC/LCE object. Through the precise control over the structural design and light irradiation, the printed object can be globally or locally programmed, erased, and reprogrammed to achieve desirable photocontrollable color patterns and 3D structure constructions.image