Shortest Route to Non-Abelian Topological Order on a Quantum Processor

被引:41
作者
Tantivasadakarn, Nathanan [1 ,2 ,3 ]
Verresen, Ruben [3 ]
Vishwanath, Ashvin [3 ]
机构
[1] CALTECH, Walter Burke Inst Theoret Phys, Pasadena, CA 91125 USA
[2] CALTECH, Dept Phys, Pasadena, CA 91125 USA
[3] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
关键词
ANYONS;
D O I
10.1103/PhysRevLett.131.060405
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A highly coveted goal is to realize emergent non-Abelian gauge theories and their anyonic excitations, which encode decoherence-free quantum information. While measurements in quantum devices provide new hope for scalably preparing such long-range entangled states, existing protocols using the experimentally established ingredients of a finite-depth circuit and a single round of measurement produce only Abelian states. Surprisingly, we show there exists a broad family of non-Abelian states- namely those with a Lagrangian subgroup-which can be created using these same minimal ingredients, bypassing the need for new resources such as feed forward. To illustrate that this provides realistic protocols, we show how D4 non-Abelian topological order can be realized, e.g., on Google's quantum processors using a depth-11 circuit and a single layer of measurements. Our work opens the way toward the realization and manipulation of non-Abelian topological orders, and highlights counterintuitive features of the complexity of non-Abelian phases.
引用
收藏
页数:5
相关论文
共 47 条
[1]   Fermion condensation and super pivotal categories [J].
Aasen, David ;
Lake, Ethan ;
Walker, Kevin .
JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (12)
[2]   Creation, Manipulation, and Detection of Abelian and Non-Abelian Anyons in Optical Lattices [J].
Aguado, M. ;
Brennen, G. K. ;
Verstraete, F. ;
Cirac, J. I. .
PHYSICAL REVIEW LETTERS, 2008, 101 (26)
[3]  
aps, US, DOI [10.1103/PhysRevLett.131.060405, DOI 10.1103/PHYSREVLETT.131.060405]
[4]   FLUX METAMORPHOSIS [J].
BAIS, FA .
NUCLEAR PHYSICS B, 1980, 170 (01) :32-43
[5]   Symmetry fractionalization, defects, and gauging of topological phases [J].
Barkeshli, Maissam ;
Bonderson, Parsa ;
Cheng, Meng ;
Wang, Zhenghan .
PHYSICAL REVIEW B, 2019, 100 (11)
[6]   Foliated Quantum Error-Correcting Codes [J].
Bolt, A. ;
Duclos-Cianci, G. ;
Poulin, D. ;
Stace, T. M. .
PHYSICAL REVIEW LETTERS, 2016, 117 (07)
[7]   Lieb-robinson bounds and the generation of correlations and topological quantum order [J].
Bravyi, S. ;
Hastings, M. B. ;
Verstraete, F. .
PHYSICAL REVIEW LETTERS, 2006, 97 (05)
[8]  
Bravyi S, 2022, Arxiv, DOI arXiv:2205.01933
[9]   Gauging fractons: Immobile non-Abelian quasiparticles, fractals, and position-dependent degeneracies [J].
Bulmash, Daniel ;
Barkeshli, Maissam .
PHYSICAL REVIEW B, 2019, 100 (15)
[10]   Numerical identification and gapped boundaries of Abelian fermionic topological order [J].
Bultinck, Nick .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2020, 2020 (08)