Mg2+ Ion Pre-Insertion Boosting Reaction Kinetics and Structural Stability of Ammonium Vanadates for High-Performance Aqueous Zinc-Ion Batteries

被引:17
|
作者
Tang, Han [1 ]
Chao, Feiyang [1 ]
Luo, Hongyu [1 ]
Yu, Kesong [2 ]
Wang, Juan [1 ]
Chen, Huibiao [1 ]
Jia, Runmin [1 ]
Xiong, Fangyu [2 ]
Pi, Yuqiang [3 ]
Luo, Ping [1 ]
An, Qinyou [2 ]
机构
[1] Hubei Univ Technol, Hubei Prov Key Lab Green Mat Light Ind, Hubei Engn Lab Automot Lightweight Mat & Proc, New Mat & Green Mfg Talent Intro & Innovat Demonst, Wuhan 430068, Peoples R China
[2] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Hubei, Peoples R China
[3] Hubei Engn Univ, Sch Chem & Mat Sci, Wuhan 432000, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
ammonium vanadates; aqueous zinc-ion batteries; cathodes; reaction kinetics; structural stability; HIGH-CAPACITY; CATHODE; INTERCALATION; ENERGY;
D O I
10.1002/cssc.202300403
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Aqueous zinc-ion batteries (AZIBs) attract much attention owing to their high safety, environmentally friendliness and low cost. However, the unsatisfactory performance of cathode materials is one of the unsolved important factors for their widespread application. Herein, we report NH4V4O10 nanorods with Mg2+ ion preinsertion (Mg-NHVO) as a high-performance cathode material for AZIBs. The preinserted Mg2+ ions effectively improve the reaction kinetics and structural stability of NH4V4O10 (NHVO), which are confirmed by electrochemical analysis and density functional theory calculations. Compared with pristine NHVO, the intrinsic conductivity of Mg-NHVO is improved by 5 times based on the test results of a single nanorod device. Besides, Mg-NHVO could maintain a high specific capacity of 152.3 mAh g(-1) after 6000 cycles at the current density of 5 A g(-1), which is larger than that of NHVO (only exhibits a low specific capacity of 30.5 mAh g(-1) at the same condition). Moreover, the two-phase crystal structure evolution process of Mg-NHVO in AZIBs is revealed. This work provides a simple and efficient method to improve the electrochemical performance of ammonium vanadates and enhances the understanding about the reaction mechanism of layered vanadium-based materials in AZIBs.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Boosting Zn2+ Intercalation in High-Performance Aqueous Zinc-Ion Batteries with Coupling-Induced Biphase Interface
    Lu, Xiaojie
    Chen, Lei
    Orenstein, Raphael
    Li, Wenxiao
    Chi, Weili
    Peng, Mao
    Wang, Chunxia
    Liu, Yong
    Zhang, Xiangwu
    SMALL, 2024,
  • [32] MnO2@PANI nanorod arrays for high-performance aqueous zinc-ion batteries
    Wen, Jiexin
    Hu, Zhipeng
    Song, Rui
    Huang, Rui
    Liu, Qingting
    Zhang, Rong
    Hu, Shengfei
    Fu, Xudong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 976
  • [33] F Doped δ-MnO2 Nanoflowers for High-Performance Aqueous Zinc-Ion Batteries
    Li, Zhou
    Ye, Zhongqiang
    Liu, Guangzhan
    Jiang, Ziyan
    Jiang, Wenjia
    Luo, Junwei
    Liu, Shaoxiong
    Hu, Hai
    Huang, Zhifeng
    Liu, Li
    BATTERIES & SUPERCAPS, 2024,
  • [34] Dynamic heterostructure design of MnO2 for high-performance aqueous zinc-ion batteries
    Zhao, Xiaoru
    Zhang, Feng
    Li, Houzhen
    Dong, Huitong
    Yan, Chuncheng
    Meng, Chao
    Sang, Yuanhua
    Liu, Hong
    Guo, Yu-Guo
    Wang, Shuhua
    ENERGY & ENVIRONMENTAL SCIENCE, 2024, 17 (10) : 3629 - 3640
  • [35] Tuning [VO6] Octahedron of Ammonium Vanadates via F Incorporation for High-Performance Aqueous Zinc Ion Batteries
    Zhuang, Yanling
    Zong, Quan
    Wu, Yuanzhe
    Liu, Chaofeng
    Zhang, Qilong
    Tao, Daiwen
    Zhang, Jingji
    Wang, Jiangying
    Cao, Guozhong
    SMALL, 2024, 20 (13)
  • [36] Modification of Zinc Anodes by In Situ ZnO Coating for High-Performance Aqueous Zinc-Ion Batteries
    Zhao, Wen
    Perera, Inosh Prabasha
    Khanna, Harshul S.
    Dang, Yanliu
    Li, Mingxuan
    Posada, Luisa F.
    Tan, Haiyan
    Suib, Steven L.
    ACS APPLIED ENERGY MATERIALS, 2024, 7 (03) : 1172 - 1181
  • [37] Structural Engineering of Vanadium Oxide Cathodes by Mn2+ Preintercalation for High-Performance Aqueous Zinc-Ion Batteries
    Li, Fengfeng
    Sheng, Hongwei
    Ma, Hongyun
    Qi, Yifeng
    Shao, Mingjiao
    Yuan, Jiao
    Li, Wenquan
    Lan, Wei
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (11) : 6201 - 6213
  • [38] Bimetallic ions pre-intercalated hydrated vanadium oxides for high-performance aqueous zinc-ion batteries
    Hu, Bingbing
    Yang, Xinyao
    Li, Dongshan
    Luo, Liang
    Jiang, Jiayu
    Du, Tianlun
    Pu, Hong
    Ma, Guangqiang
    Xiang, Bin
    Li, Zhi
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 1008
  • [39] Boosting tough metal Zn anode by MOF layer for high-performance zinc-ion batteries
    Zhang, Weiwei
    Qi, Weitong
    Yang, Kai
    Hu, Yuanyuan
    Jiang, Fuyi
    Liu, Wenbao
    Du, Lingyu
    Yan, Zhenhua
    Sun, Jianchao
    ENERGY STORAGE MATERIALS, 2024, 71
  • [40] A quinoxalinophenazinedione covalent triazine framework for boosted high-performance aqueous zinc-ion batteries
    Wang, Yiyun
    Wang, Xinlei
    Tang, Jian
    Tang, Weihua
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (26) : 13868 - 13875