Heat accumulation effects in femtosecond laser-induced subwavelength periodic surface structures on silicon

被引:2
|
作者
Fu, Qiang [1 ,2 ,3 ]
Qian, Jing [1 ,2 ,3 ]
Wang, Guande [1 ,2 ,3 ]
Zhao, Quanzhong [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, State Key Lab High Field Laser Phys, Shanghai 201800, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, CAS Ctr Excellence Ultraintense Laser Sci, Shanghai 201800, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
laser materials processing; femtosecond laser; subwavelength periodic surface structures; ABLATION; METALS;
D O I
10.3788/COL202321.051402
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
High-repetition rate femtosecond lasers are shown to drive heat accumulation processes that are attractive for femto-second laser-induced subwavelength periodic surface structures on silicon. Femtosecond laser micromachining is no longer a nonthermal process, as long as the repetition rate reaches up to 100 kHz due to heat accumulation. Moreover, a higher repetition rate generates much better defined ripple structures on the silicon surface, based on the fact that accumulated heat raises lattice temperature to the melting point of silicon (1687 K), with more intense surface plasmons excited simultaneously. Comparison of the surface morphology on repetition rate and on the overlapping rate confirms that repetition rate and pulse overlapping rate are two competing factors that are responsible for the period of ripple structures. Ripple period drifts longer because of a higher repetition rate due to increasing electron density; however, the period of laser structured surface is significantly reduced with the pulse overlapping rate. The Maxwell-Garnett effect is confirmed to account for the ripple period-decreasing trend with the pulse overlapping rate.
引用
收藏
页数:5
相关论文
共 50 条
  • [11] Femtosecond laser-induced periodic surface structures on hard and brittle materials
    Zhao, GuoXu
    Wang, Gong
    Li, YunFei
    Wang, Lei
    Lian, YuDong
    Yu, Yu
    Zhao, Hui
    Wang, YuLei
    Lu, ZhiWei
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2024, 67 (01) : 19 - 36
  • [12] Femtosecond laser-induced periodic surface structures on hard and brittle materials
    GuoXu Zhao
    Gong Wang
    YunFei Li
    Lei Wang
    YuDong Lian
    Yu Yu
    Hui Zhao
    YuLei Wang
    ZhiWei Lu
    Science China Technological Sciences, 2024, 67 : 19 - 36
  • [13] Large area laser-induced periodic surface structures on steel by bursts of femtosecond pulses with picosecond delays
    Giannuzzi, Giuseppe
    Gaudiuso, Caterina
    Di Franco, Cinzia
    Scamarcio, Gaetano
    Lugara, Pietro Mario
    Ancona, Antonio
    OPTICS AND LASERS IN ENGINEERING, 2019, 114 : 15 - 21
  • [14] Femtosecond laser-induced cross-periodic structures on a crystalline silicon surface under low pulse number irradiation
    Ji, Xu
    Jiang, Lan
    Li, Xiaowei
    Han, Weina
    Liu, Yang
    Wang, Andong
    Lu, Yongfeng
    APPLIED SURFACE SCIENCE, 2015, 326 : 216 - 221
  • [15] Experimental research of laser-induced periodic surface structures in a typical liquid by a femtosecond laser
    Hu, Youwang
    Yue, Haoming
    Duan, Ji'an
    Wang, Cong
    Zhou, Jianying
    Lu, Yunpeng
    Yin, Kai
    Dong, Xinran
    Su, Wenyi
    Sun, Xiaoyan
    CHINESE OPTICS LETTERS, 2017, 15 (02)
  • [16] Laser-induced periodic surface structures formed on the sidewalls of microholes trepanned by a femtosecond laser
    Khai Xuan Pham
    Tanabe, Rie
    Ito, Yoshiro
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2013, 112 (02): : 485 - 493
  • [17] Generation and erasure of femtosecond laser-induced periodic surface structures on nanoparticle-covered silicon by a single laser pulse
    Yang, Ming
    Wu, Qiang
    Chen, Zhandong
    Zhang, Bin
    Tang, Baiquan
    Yao, Jianghong
    Drevensek-Olenik, Irena
    Xu, Jingjun
    OPTICS LETTERS, 2014, 39 (02) : 343 - 346
  • [18] Fabrication of versatile functional surface properties based on femtosecond laser-induced periodic surface structures (LIPSS)
    Graef, S.
    Kunz, C.
    Mueller, F. A.
    LASER-BASED MICRO- AND NANOPROCESSING XIV, 2020, 11268
  • [19] Femtosecond laser-induced surface structures on carbon fibers
    Sajzew, Roman
    Schroeder, Jan
    Kunz, Clemens
    Engel, Sebastian
    Mueller, Frank A.
    Graef, Stephan
    OPTICS LETTERS, 2015, 40 (24) : 5734 - 5737
  • [20] Femtosecond laser-induced periodic surface structures of copper: Experimental and modeling comparison
    Chang, Chin-Lun
    Cheng, Chung-Wei
    Chen, Jinn-Kuen
    APPLIED SURFACE SCIENCE, 2019, 469 : 904 - 910