Model-Based Tensor Low-Rank Clustering

被引:1
作者
Li, Junge [1 ]
Mai, Qing [1 ]
机构
[1] Florida State Univ, Dept Stat, Tallahassee, FL 32306 USA
基金
美国国家科学基金会;
关键词
Dimension reduction; EM algorithm; Mixture models; Sparsity; Tucker decomposition; MAXIMUM-LIKELIHOOD; REGRESSION; DECOMPOSITIONS; CLASSIFICATION; ALGORITHM; SELECTION; MIXTURES;
D O I
10.1080/10618600.2023.2205913
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Tensors have become prevalent in business applications and scientific studies. It is of great interest to analyze and understand the heterogeneity in tensor-variate observations. We propose a novel tensor low-rank mixture model (TLMM) to conduct efficient estimation and clustering on tensors. The model combines the Tucker low-rank structure in mean contrasts and the separable covariance structure to achieve parsimonious and interpretable modeling. To implement efficient computation under this model, we develop a low-rank enhanced expectation-maximization (LEEM) algorithm. The pseudo E-step and the pseudo M-step are carefully designed to incorporate variable selection and efficient parameter estimation. Numerical results in extensive experiments demonstrate the encouraging performance of the proposed method compared to popular vector and tensor methods. for this article are available online.
引用
收藏
页码:208 / 218
页数:11
相关论文
共 41 条
[32]   A feasible method for optimization with orthogonality constraints [J].
Wen, Zaiwen ;
Yin, Wotao .
MATHEMATICAL PROGRAMMING, 2013, 142 (1-2) :397-434
[33]   A Framework for Feature Selection in Clustering [J].
Witten, Daniela M. ;
Tibshirani, Robert .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2010, 105 (490) :713-726
[34]   STATISTICALLY OPTIMAL AND COMPUTATIONALLY EFFICIENT LOW RANK TENSOR COMPLETION FROM NOISY ENTRIES [J].
Xia, Dong ;
Yuan, Ming ;
Zhang, Cun-Hui .
ANNALS OF STATISTICS, 2021, 49 (01) :76-99
[35]   Model selection and estimation in regression with grouped variables [J].
Yuan, M ;
Lin, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2006, 68 :49-67
[36]   ISLET: Fast and Optimal Low-Rank Tensor Regression via Importance Sketching [J].
Zhang, Anru ;
Luo, Yuetian ;
Raskutti, Garvesh ;
Yuan, Ming .
SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE, 2020, 2 (02) :444-479
[37]   Optimal Sparse Singular Value Decomposition for High-Dimensional High-Order Data [J].
Zhang, Anru ;
Han, Rungang .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2019, 114 (528) :1708-1725
[38]   CROSS: EFFICIENT LOW-RANK TENSOR COMPLETION [J].
Zhang, Anru .
ANNALS OF STATISTICS, 2019, 47 (02) :936-964
[39]   Tensor SVD: Statistical and Computational Limits [J].
Zhang, Anru ;
Xia, Dong .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (11) :7311-7338
[40]   EVENT-RELATED POTENTIALS DURING OBJECT RECOGNITION TASKS [J].
ZHANG, XL ;
BEGLEITER, H ;
PORJESZ, B ;
WANG, WY ;
LITKE, A .
BRAIN RESEARCH BULLETIN, 1995, 38 (06) :531-538