Model-Based Tensor Low-Rank Clustering

被引:1
作者
Li, Junge [1 ]
Mai, Qing [1 ]
机构
[1] Florida State Univ, Dept Stat, Tallahassee, FL 32306 USA
基金
美国国家科学基金会;
关键词
Dimension reduction; EM algorithm; Mixture models; Sparsity; Tucker decomposition; MAXIMUM-LIKELIHOOD; REGRESSION; DECOMPOSITIONS; CLASSIFICATION; ALGORITHM; SELECTION; MIXTURES;
D O I
10.1080/10618600.2023.2205913
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Tensors have become prevalent in business applications and scientific studies. It is of great interest to analyze and understand the heterogeneity in tensor-variate observations. We propose a novel tensor low-rank mixture model (TLMM) to conduct efficient estimation and clustering on tensors. The model combines the Tucker low-rank structure in mean contrasts and the separable covariance structure to achieve parsimonious and interpretable modeling. To implement efficient computation under this model, we develop a low-rank enhanced expectation-maximization (LEEM) algorithm. The pseudo E-step and the pseudo M-step are carefully designed to incorporate variable selection and efficient parameter estimation. Numerical results in extensive experiments demonstrate the encouraging performance of the proposed method compared to popular vector and tensor methods. for this article are available online.
引用
收藏
页码:208 / 218
页数:11
相关论文
共 41 条
[11]   Tensor envelope mixture model for simultaneous clustering and multiway dimension reduction [J].
Deng, Kai ;
Zhang, Xin .
BIOMETRICS, 2022, 78 (03) :1067-1079
[12]   HIGH-DIMENSIONAL CLASSIFICATION USING FEATURES ANNEALED INDEPENDENCE RULES [J].
Fan, Jianqing ;
Fan, Yingying .
ANNALS OF STATISTICS, 2008, 36 (06) :2605-2637
[13]   Finite mixtures of skewed matrix variate distributions [J].
Gallaugher, Michael P. B. ;
McNicholas, Paul D. .
PATTERN RECOGNITION, 2018, 80 :83-93
[14]   Regularized matrix data clustering and its application to image analysis [J].
Gao, Xu ;
Shen, Weining ;
Zhang, Liwen ;
Hu, Jianhua ;
Fortin, Norbert J. ;
Frostig, Ron D. ;
Ombao, Hernando .
BIOMETRICS, 2021, 77 (03) :890-902
[15]  
Hao BT, 2018, J MACH LEARN RES, V18
[16]   Tensor Decompositions and Applications [J].
Kolda, Tamara G. ;
Bader, Brett W. .
SIAM REVIEW, 2009, 51 (03) :455-500
[17]  
Li J., 2023, TUCKER LOW RAN UNPUB
[18]   Parsimonious Tensor Response Regression [J].
Li, Lexin ;
Zhang, Xin .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2017, 112 (519) :1131-1146
[19]   Tucker Tensor Regression and Neuroimaging Analysis [J].
Li X. ;
Xu D. ;
Zhou H. ;
Li L. .
Statistics in Biosciences, 2018, 10 (3) :520-545
[20]   Discriminating sample groups with multi-way data [J].
Lyu, Tianmeng ;
Lock, Eric F. ;
Eberly, Lynn E. .
BIOSTATISTICS, 2017, 18 (03) :434-450