Machine Learning Methods to Address Confounding in Sepsis Mortality Rate

被引:0
作者
Basu, T. [1 ]
Teng, D. [1 ]
Bhomia, N. [1 ]
O'Malley, M. [1 ]
McLaughlin, E. [1 ]
Munroe, E. [1 ]
Bozyk, P. D. [2 ]
Blamoun, J. [3 ]
Kocher, K. [4 ]
Horowitz, J. [1 ]
Posa, P. [1 ]
Flanders, S. [1 ]
Prescott, H. C. [5 ]
机构
[1] Univ Michigan, Dept Med, Ann Arbor, MI USA
[2] William Beaumont Hosp, Pulm & Crit Care Med, Royal Oak, MI USA
[3] MyMichigan Hlth, Pulmonol & Crit Care Med, Midland, MI USA
[4] Univ Michigan, Dept Emergency Med, Ann Arbor, MI USA
[5] Univ Michigan, Div Pulm & Crit Care Med, Ann Arbor, MI USA
关键词
D O I
暂无
中图分类号
R4 [临床医学];
学科分类号
1002 ; 100602 ;
摘要
A5934
引用
收藏
页数:2
相关论文
共 50 条
  • [41] Machine learning for predicting mortality in adult critically ill patients with Sepsis: A systematic review
    Nikravangolsefid, Nasrin
    Reddy, Swetha
    Truong, Hong Hieu
    Charkviani, Mariam
    Ninan, Jacob
    Prokop, Larry J.
    Suppadungsuk, Supawadee
    Singh, Waryaam
    Kashani, Kianoush B.
    Garces, Juan Pablo Domecq
    JOURNAL OF CRITICAL CARE, 2024, 84
  • [42] Survival prediction for heart failure complicated by sepsis: based on machine learning methods
    Zhang, Qitian
    Xu, Lizhen
    He, Weibin
    Lai, Xinqi
    Huang, Xiaohong
    FRONTIERS IN MEDICINE, 2024, 11
  • [43] Statistical quantification of confounding bias in machine learning models
    Spisak, Tamas
    GIGASCIENCE, 2022, 11
  • [44] Prediction of in-hospital mortality rate in COVID-19 patients with diabetes mellitus using machine learning methods
    Khodabakhsh, Pooneh
    Asadnia, Ali
    Moghaddam, Alieyeh Sarabandi
    Khademi, Maryam
    Shakiba, Majid
    Maher, Ali
    Salehian, Elham
    JOURNAL OF DIABETES AND METABOLIC DISORDERS, 2023, 22 (02) : 1177 - 1190
  • [45] Prediction of in-hospital mortality rate in COVID-19 patients with diabetes mellitus using machine learning methods
    Pooneh Khodabakhsh
    Ali Asadnia
    Alieyeh Sarabandi Moghaddam
    Maryam Khademi
    Majid Shakiba
    Ali Maher
    Elham Salehian
    Journal of Diabetes & Metabolic Disorders, 2023, 22 : 1177 - 1190
  • [46] Methods to Address Confounding and Other Biases in Meta-Analyses: Review and Recommendations
    Mathur, Maya B.
    VanderWeele, Tyler J.
    ANNUAL REVIEW OF PUBLIC HEALTH, 2022, 43 : 19 - 35
  • [47] Mortality Prediction In Heart Transplant Recipients Using Machine Learning Methods
    Carcamo, Francisco javier jimenez
    Rubens, Muni
    Saxena, Anshul
    Koerfer, Daniel
    Gonzalez, Pablo gordilo
    Ali, Shozab
    Vaidean, Georgetta
    Chaparro, Sandra
    Fontana, Marianna
    Kumar, Varun
    Sheridan, Paige
    Rubens, Lexie
    Toyip, Astra
    Boehme, Amelia
    Bender, Shaun
    Capocelli, Kelley
    Danese, David
    JOURNAL OF CARDIAC FAILURE, 2025, 31 (01)
  • [48] TREE-BASED MACHINE LEARNING METHODS FOR MODELING AND FORECASTING MORTALITY
    Bjerre, Dorethe Skovgaard
    ASTIN BULLETIN-THE JOURNAL OF THE INTERNATIONAL ACTUARIAL ASSOCIATION, 2022, 52 (03) : 765 - 787
  • [49] Caffeine Effect as Confounding Factor in Sepsis Diagnosis by Heart Rate Signal Processing
    Maghsoudi, Amid
    Heidarzadeh, Mohammad
    Afjeh, Abolfazl
    Alizadeh, Parinaz
    Kashan, Abbas Abaei
    Bordbar, Arash
    Mirnia, Kayvan
    CRESCENT JOURNAL OF MEDICAL AND BIOLOGICAL SCIENCES, 2020, 7 (04): : 510 - 517
  • [50] Sepsis prediction using machine-learning methods: prolonged disorders of consciousness patients
    Metsker, O.
    Aybazova, M.
    Kondratyeva, E.
    Dryagina, N.
    Kondratev, A.
    Efimov, E.
    JOURNAL OF THE NEUROLOGICAL SCIENCES, 2019, 405