On Nonsmooth Multiobjective Semi-Infinite Programming Problems with Mixed Constraints

被引:0
作者
Soroush, H. [1 ]
机构
[1] Payame Noor Univ PNU, Dept Math, Math, Tehran, Iran
关键词
Optimality conditions; Semi-infinite prob-lem; Multiobjective optimization; Constraint qualification; OPTIMALITY CONDITIONS; QUALIFICATIONS; SYSTEMS;
D O I
10.30495/JME.2023.2500
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the multiobjective semi-infinite programming problems with feasible sets defined by equality and inequality con-straints, in which the objective and the constraints functions are lo-cally Lipschitz. First, we introduce an Arrow-Hurwitcz-Uzawa type con-straint qualification which is based on the Clarke subdifferential. Then, we derive the strong Karush-Kuhn-Tucker type necessary optimality condition for properly efficient solutions of the considered problems.
引用
收藏
页数:1
相关论文
共 28 条
[1]  
Arrow KennethJ., 1961, Naval Research Logistics Quarterly, V8, P175, DOI DOI 10.1002/NAV.3800080206
[2]  
Clarke F. H., 1983, CANADIAN MATH SOC SE
[3]  
Ehrgott M., 2005, Multicriteria optimization
[4]   Optimality conditions in convex multiobjective SIP [J].
Goberna, Miguel A. ;
Kanzi, Nader .
MATHEMATICAL PROGRAMMING, 2017, 164 (1-2) :167-191
[5]  
Gorberna M.A., 1998, LINEAR SEMIINFINITE
[6]   Weak Slater Qualification for Nonconvex Multiobjective Semi-infinite Programming [J].
Habibi, Sakineh ;
Kanzi, Nader ;
Ebadian, Ali .
IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2020, 44 (02) :417-424
[7]   SEMIINFINITE PROGRAMMING - THEORY, METHODS, AND APPLICATIONS [J].
HETTICH, R ;
KORTANEK, KO .
SIAM REVIEW, 1993, 35 (03) :380-429
[8]  
Hiriart-Urruty J., 1991, CONVEX ANAL MINIMIZA
[9]  
Kanz N, 2017, PAC J OPTIM, V13, P43
[10]  
Kanzi N, 2014, J MATH EXT, V8, P83