Optical Properties of Conical Quantum Dot: Exciton-Related Raman Scattering, Interband Absorption and Photoluminescence

被引:6
作者
Gavalajyan, Sargis P. [1 ]
Mantashian, Grigor A. [1 ,2 ]
Kharatyan, Gor Ts. [1 ]
Sarkisyan, Hayk A. [1 ]
Mantashyan, Paytsar A. [1 ,2 ]
Baskoutas, Sotirios [3 ]
Hayrapetyan, David B. [1 ,2 ]
机构
[1] Russian Armenian Univ, Dept Gen Phys & Quantum Nanostruct, 123 Hovsep Emin Str, Yerevan 0051, Armenia
[2] NAS RA, Inst Chem Phys, 5-2 Paruyr Sevak St, Yerevan 0014, Armenia
[3] Univ Patras, Dept Mat Sci, Patras 26504, Greece
关键词
conical quantum dot; exciton; Raman scattering; interband absorption; photoluminescence; STRONG-CONFINEMENT APPROACH; SENSITIZED SOLAR-CELLS; REFRACTIVE-INDEX; DONOR-IMPURITY; SPECTROSCOPY; ELECTRON; STATES; SPECTRA; COEFFICIENT; EFFICIENCY;
D O I
10.3390/nano13081393
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The current work used the effective mass approximation conjoined with the finite element method to study the exciton states in a conical GaAs quantum dot. In particular, the dependence of the exciton energy on the geometrical parameters of a conical quantum dot has been studied. Once the one-particle eigenvalue equations have been solved, both for electrons and holes, the available information on energies and wave functions is used as input to calculate exciton energy and the effective band gap of the system. The lifetime of an exciton in a conical quantum dot has been estimated and shown to be in the range of nanoseconds. In addition, exciton-related Raman scattering, interband light absorption and photoluminescence in conical GaAs quantum dots have been calculated. It has been shown that with a decrease in the size of the quantum dot, the absorption peak has a blue shift, which is more pronounced for quantum dots of smaller sizes. Furthermore, the interband optical absorption and photoluminescence spectra have been revealed for different sizes of GaAs quantum dot.
引用
收藏
页数:13
相关论文
共 68 条
[1]   Prolate spheroidal quantum dot: Electronic states, direct interband light absorption and electron dipole moment [J].
Baghdasaryan, D. A. ;
Hayrapetyan, D. B. ;
Kazaryan, E. M. .
PHYSICA B-CONDENSED MATTER, 2015, 479 :85-89
[2]   Electronic structure and nonlinear optical rectification in a quantum dot: effects of impurities and external electric field [J].
Baskoutas, S. ;
Paspalakis, E. ;
Terzis, A. F. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2007, 19 (39)
[3]  
Bathe K.-J., 2007, WILEY ENCYCL COMPUT, P1, DOI [10.1002/9780470050118.ecse159, DOI 10.1002/9780470050118.ECSE159]
[4]   Narrow Intrinsic Line Widths and Electron-Phonon Coupling of InP Colloidal Quantum Dots [J].
Berkinsky, David B. ;
Proppe, Andrew H. ;
Utzat, Hendrik ;
Krajewska, Chantalle J. ;
Sun, Weiwei ;
Sverko, Tara ;
Yoo, Jason J. ;
Chung, Heejae ;
Won, Yu-Ho ;
Jang, Eunjoo ;
Bawendi, Moungi G. .
ACS NANO, 2023, 17 (04) :3598-3609
[5]   On conversion of luminescence into absorption and the van Roosbroeck-Shockley relation [J].
Bhattacharya, Rupak ;
Pal, Bipul ;
Bansal, Bhavtosh .
APPLIED PHYSICS LETTERS, 2012, 100 (22)
[6]   Non-Linear Optical Properties of Biexciton in Ellipsoidal Quantum Dot [J].
Bleyan, Yuri Y. ;
Mantashyan, Paytsar A. ;
Kazaryan, Eduard M. ;
Sarkisyan, Hayk A. ;
Accorsi, Gianluca ;
Baskoutas, Sotirios ;
Hayrapetyan, David B. .
NANOMATERIALS, 2022, 12 (09)
[7]   Resonant photoionization absorption spectra of spherical quantum dots [J].
Bondarenko, V ;
Zhao, Y .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2003, 15 (09) :1377-1385
[8]   Perturbation calculation of donor states in a spherical quantum dot [J].
Bose, C ;
Sarkar, CK .
SOLID-STATE ELECTRONICS, 1998, 42 (09) :1661-1663
[9]   THEORY OF ONE-PHONON RAMAN-SCATTERING IN SEMICONDUCTOR MICROCRYSTALLITES [J].
CHAMBERLAIN, MP ;
TRALLEROGINER, C ;
CARDONA, M .
PHYSICAL REVIEW B, 1995, 51 (03) :1680-1693
[10]   High Efficiency Mesoscopic Solar Cells Using CsPbI3 Perovskite Quantum Dots Enabled by Chemical Interface Engineering [J].
Chen, Keqiang ;
Jin, Wei ;
Zhang, Yupeng ;
Yang, Tingqiang ;
Reiss, Peter ;
Zhong, Qiaohui ;
Bach, Udo ;
Li, Qitao ;
Wang, Yingwei ;
Zhang, Han ;
Bao, Qiaoliang ;
Liu, Yueli .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (08) :3775-3783