A novel flower petal-shaped super wideband (439.36-557.59 THz) optical nano-antenna for terahertz (THz) wireless communication applications

被引:5
作者
Das, Sudipta [1 ]
Lakrit, Soufian [2 ]
Krishna, Ch Murali [3 ]
Varakumari, Samudrala [4 ]
Mohammed, Bendaoued [5 ]
Ahmed, Faize [2 ]
机构
[1] IMPS Coll Engn & Technol, Dept Elect & Commun Engn, Malda, West Bengal, India
[2] Mohammed First Univ Oujda, Higher Sch Technol Nador, Appl Math & Informat Syst Lab, Oujda, Morocco
[3] Birla Inst Technol & Sci, Dept Elect & Elect Engn, Hyderabad, Telangana, India
[4] NRI Inst Technol, Dept Elect & Commun Engn, Vijayawada, Andhra Pradesh, India
[5] Hassan 1st Univ, Fac Sci & Technol, Mech IT Elect & Telecommun MIET, Settat, Morocco
关键词
Nano antenna; Terahertz communication; Super wideband; Optical antenna; Visible light spectrum; Optical wavelength; RESONANCE; DESIGN; GAAS;
D O I
10.1007/s11082-023-04802-z
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This work presents the design and analysis of a super wideband nano-scaled optical antenna for terahertz (THz) wireless communication applications in the visible light spectrum (380 nm to 700 nm). The proposed antenna is designed on a 50 nm thick GaAs substrate with a dielectric constant of 12.94. The radiating patch of the suggested antenna is configured in the shape of a flower's petal through the intersection of three modified circles. The suggested compact antenna (500 x 600 nm(2)) offers an attractive impedance and radiation characteristics in terms of reflection coefficient, VSWR, gain, radiation efficiency and radiation patterns. The performance of the proposed antenna has been judged by executing the design on various substrate materials. The designed nano-sized antenna offers a super wide impedance bandwidth (SWIB) of 118.23 THz (439.36-557.59 THz) with a peak radiation efficiency of 92%, and peak gain of 5.8 dBi. The suggested THz optical nano antenna covers a broad optical wavelength from 538.02 nm (557.59 THz) to 682.81 nm (439.36 THz) with attractive characteristic parameters and hence it would be an exemplary choice for optical communication and nano-photonics to support short-range high-speed indoor wireless communication, biomedical imaging, security scanning, detection of explosive, and material characterization in the THz optical regime.
引用
收藏
页数:19
相关论文
共 44 条
[1]   Ultra-compact two-dimensional plasmonic nano-ring antenna array for sensing applications [J].
Ahmadian, D. ;
Ghobadi, Ch. ;
Nourinia, J. .
OPTICAL AND QUANTUM ELECTRONICS, 2014, 46 (09) :1097-1106
[2]   Antenna Design for Directivity-Enhanced Raman Spectroscopy [J].
Ahmed, Aftab ;
Pang, Yuanjie ;
Hajisalem, Ghazal ;
Gordon, Reuven .
INTERNATIONAL JOURNAL OF OPTICS, 2012, 2012
[3]   Terahertz band: Next frontier for wireless communications [J].
Akyildiz, Ian F. ;
Jornet, Josep Miquel ;
Han, Chong .
PHYSICAL COMMUNICATION, 2014, 12 :16-32
[4]   Hertzian plasmonic nanodimer as an efficient optical nanoantenna [J].
Alu, Andrea ;
Engheta, Nader .
PHYSICAL REVIEW B, 2008, 78 (19)
[5]   Radiation pattern direction control in nano-antenna (tunable nano-antenna) [J].
Beheshti Asl, A. ;
Rostami, A. ;
Amiri, I. S. .
OPTICAL AND QUANTUM ELECTRONICS, 2019, 51 (11)
[6]   Optical Antennas [J].
Bharadwaj, Palash ;
Deutsch, Bradley ;
Novotny, Lukas .
ADVANCES IN OPTICS AND PHOTONICS, 2009, 1 (03) :438-483
[7]   Nanoantennas for visible and infrared radiation [J].
Biagioni, Paolo ;
Huang, Jer-Shing ;
Hecht, Bert .
REPORTS ON PROGRESS IN PHYSICS, 2012, 75 (02)
[8]  
Das S., 2021, ADV TERAHERTZ TECHNO, DOI [10.1007/978-981-16-5731-3_1, DOI 10.1007/978-981-16-5731-3_1]
[9]   Imaging and steering an optical wireless nanoantenna link [J].
Dregely, Daniel ;
Lindfors, Klas ;
Lippitz, Markus ;
Engheta, Nader ;
Totzeck, Michael ;
Giessen, Harald .
NATURE COMMUNICATIONS, 2014, 5
[10]   3D optical Yagi-Uda nanoantenna array [J].
Dregely, Daniel ;
Taubert, Richard ;
Dorfmueller, Jens ;
Vogelgesang, Ralf ;
Kern, Klaus ;
Giessen, Harald .
NATURE COMMUNICATIONS, 2011, 2