Room-temperature photosynthesis of propane from CO2 with Cu single atoms on vacancy-rich TiO2

被引:251
作者
Shen, Yan [1 ,2 ]
Ren, Chunjin [3 ]
Zheng, Lirong [4 ]
Xu, Xiaoyong [5 ]
Long, Ran [6 ]
Zhang, Wenqing [6 ]
Yang, Yong [7 ]
Zhang, Yongcai [5 ]
Yao, Yingfang [1 ,2 ,8 ]
Chi, Haoqiang [1 ]
Wang, Jinlan [3 ]
Shen, Qing [9 ]
Xiong, Yujie [6 ]
Zou, Zhigang [1 ,2 ,8 ]
Zhou, Yong [1 ,8 ,10 ]
机构
[1] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Natl Lab Solid State Microstruct, Key Lab Modern Acoust MOE,Ecomat & Renewable Energ, Nanjing, Peoples R China
[2] Nanjing Univ, Coll Engn & Appl Sci, Nanjing, Peoples R China
[3] Southeast Univ, Sch Phys, Nanjing, Peoples R China
[4] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China
[5] Yangzhou Univ, Chem Interdisciplinary Res Ctr, Sch Chem & Chem Engn, Yangzhou, Peoples R China
[6] Univ Sci & Technol China, Collaborat Innovat Ctr Chem Energy Mat iChEM, Sch Chem & Mat Sci, Hefei Natl Lab Phys Sci Microscale, Hefei, Peoples R China
[7] Nanjing Univ Sci & Technol, Key Lab Soft Chem & Funct Mat MOE, Nanjing, Peoples R China
[8] Chinese Univ Hong Kong Shenzhen, Sch Sci & Engn, Shenzhen, Peoples R China
[9] Univ Electrocommun, Grad Sch Informat & Engn, Chofu, Tokyo, Japan
[10] Anhui Polytech Univ, Sch Chem & Environm Engn, Wuhu, Peoples R China
关键词
METAL-SUPPORT INTERACTIONS; PHOTOCATALYTIC REDUCTION; CARBON-DIOXIDE; NANOSHEETS; CHALLENGES; CONVERSION; CATALYSTS; OXIDE; FABRICATION; METHANE;
D O I
10.1038/s41467-023-36778-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A photocatalyst for CO2 reduction to C3H8 is prepared by implanting Cu single atoms on vacancy rich TiO2 single layers. Key reaction intermediates, *CHOCO and *CH2OCOCO, are stabilized on the catalyst which promotes C-C bond formation. Photochemical conversion of CO2 into high-value C2+ products is difficult to achieve due to the energetic and mechanistic challenges in forming multiple C-C bonds. Herein, an efficient photocatalyst for the conversion of CO2 into C3H8 is prepared by implanting Cu single atoms on Ti0.91O2 atomically-thin single layers. Cu single atoms promote the formation of neighbouring oxygen vacancies (V(O)s) in Ti0.91O2 matrix. These oxygen vacancies modulate the electronic coupling interaction between Cu atoms and adjacent Ti atoms to form a unique Cu-Ti-V-O unit in Ti0.91O2 matrix. A high electron-based selectivity of 64.8% for C3H8 (product-based selectivity of 32.4%), and 86.2% for total C2+ hydrocarbons (product-based selectivity of 50.2%) are achieved. Theoretical calculations suggest that Cu-Ti-V-O unit may stabilize the key *CHOCO and *CH2OCOCO intermediates and reduce their energy levels, tuning both C-1-C-1 and C-1-C-2 couplings into thermodynamically-favourable exothermal processes. Tandem catalysis mechanism and potential reaction pathway are tentatively proposed for C3H8 formation, involving an overall (20e(-) - 20H(+)) reduction and coupling of three CO2 molecules at room temperature.
引用
收藏
页数:9
相关论文
共 65 条
[1]   BAND THEORY AND MOTT INSULATORS - HUBBARD-U INSTEAD OF STONER-I [J].
ANISIMOV, VI ;
ZAANEN, J ;
ANDERSEN, OK .
PHYSICAL REVIEW B, 1991, 44 (03) :943-954
[2]   Atomically Thin Two-Dimensional Solids: An Emerging Platform, for CO2 Electroreduction [J].
Bi, Wentuan ;
Wu, Changzheng ;
Xie, Yi .
ACS ENERGY LETTERS, 2018, 3 (03) :624-633
[3]   Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels [J].
Birdja, Yuvraj Y. ;
Perez-Gallent, Elena ;
Figueiredo, Marta C. ;
Gottle, Adrien J. ;
Calle-Vallejo, Federico ;
Koper, Marc T. M. .
NATURE ENERGY, 2019, 4 (09) :732-745
[4]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[5]   What Should We Make with CO2 and How Can We Make It? [J].
Bushuyev, Oleksandr S. ;
De Luna, Phil ;
Cao Thang Dinh ;
Tao, Ling ;
Saur, Genevieve ;
van de lagemaat, Jao ;
Kelley, Shana O. ;
Sargent, Edward H. .
JOULE, 2018, 2 (05) :825-832
[6]   Accounting for Bifurcating Pathways in the Screening for CO2 Reduction Catalysts [J].
Calle-Vallejo, Federico ;
Koper, Marc T. M. .
ACS CATALYSIS, 2017, 7 (10) :7346-7351
[7]   Designing Cu-Based Tandem Catalysts for CO2 Electroreduction Based on Mass Transport of CO Intermediate [J].
Cao, Bo ;
Li, Fu-Zhi ;
Gu, Jun .
ACS CATALYSIS, 2022, 12 (15) :9735-9752
[8]   Photosynthetic semiconductor biohybrids for solar-driven biocatalysis [J].
Cestellos-Blanco, Stefano ;
Zhang, Hao ;
Kim, Ji Min ;
Shen, Yue-xiao ;
Yang, Peidong .
NATURE CATALYSIS, 2020, 3 (03) :245-255
[9]   Cu-Ag Tandem Catalysts for High-Rate CO2 Electrolysis toward Multicarbons [J].
Chen, Chubai ;
Li, Yifan ;
Yu, Sunmoon ;
Louisia, Sheena ;
Jin, Jianbo ;
Li, Mufan ;
Ross, Michael B. ;
Yang, Peidong .
JOULE, 2020, 4 (08) :1688-1699
[10]   Engineering the Atomic Interface with Single Platinum Atoms for Enhanced Photocatalytic Hydrogen Production [J].
Chen, Yuanjun ;
Ji, Shufang ;
Sun, Wenming ;
Lei, Yongpeng ;
Wang, Qichen ;
Li, Ang ;
Chen, Wenxing ;
Zhou, Gang ;
Zhang, Zedong ;
Wang, Yu ;
Zheng, Lirong ;
Zhang, Qinghua ;
Gu, Lin ;
Han, Xiaodong ;
Wang, Dingsheng ;
Li, Yadong .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (03) :1295-1301