A chromosome-level genome assembly of radish (Raphanus sativus L.) reveals insights into genome adaptation and differential bolting regulation

被引:32
作者
Xu, Liang [1 ]
Wang, Yan [1 ]
Dong, Junhui [1 ]
Zhang, Wei [1 ,2 ]
Tang, Mingjia [1 ]
Zhang, Weilan [1 ]
Wang, Kai [3 ]
Chen, Yinglong [4 ]
Zhang, Xiaoli [1 ]
He, Qing [1 ]
Zhang, Xinyu [1 ]
Wang, Lun
Ma, Yinbo [2 ]
Xia, Kai [1 ]
Liu, Liwang [1 ,2 ]
机构
[1] Nanjing Agr Univ, Coll Hort, Natl Key Lab Crop Genet & Germplasm Enhancement, Key Lab Hort Crop Biol & Genet Improvement East Ch, Nanjing, Peoples R China
[2] Yangzhou Univ, Coll Hort & Landscape Architecture, Yangzhou, Peoples R China
[3] Nantong Univ, Sch Life Sci, Nantong, Peoples R China
[4] Univ Western Australia, UWA Inst Agr, Sch Agr & Environm, Perth, WA, Australia
基金
中国国家自然科学基金;
关键词
Raphanus sativus; Genome assembly; RsNBS-LRRs; Structure variation; RsVRN1; Differential bolting time; FLOWERING TIME; PHYLOGENETIC ANALYSIS; PROVIDES INSIGHTS; READ ALIGNMENT; GENE; ARABIDOPSIS; IDENTIFICATION; TRANSCRIPTION; EXPRESSION; EVOLUTION;
D O I
10.1111/pbi.14011
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
High-quality radish (Raphanus sativus) genome represents a valuable resource for agronomical trait improvements and understanding genome evolution among Brassicaceae species. However, existing radish genome assembly remains fragmentary, which greatly hampered functional genomics research and genome-assisted breeding. Here, using a NAU-LB radish inbred line, we generated a reference genome of 476.32 Mb with a scaffold N50 of 56.88 Mb by incorporating Illumina, PacBio and BioNano optical mapping techniques. Utilizing Hi-C data, 448.12 Mb (94.08%) of the assembled sequences were anchored to nine radish chromosomes with 40 306 protein-coding genes annotated. In total, 249.14 Mb (52.31%) comprised the repetitive sequences, among which long terminal repeats (LTRs, 30.31%) were the most abundant class. Beyond confirming the whole-genome triplication (WGT) event in R. sativus lineage, we found several tandem arrayed genes were involved in stress response process, which may account for the distinctive phenotype of high disease resistance in R. sativus. By comparing against the existing Xin-li-mei radish genome, a total of 2 108 573 SNPs, 7740 large insertions, 7757 deletions and 84 inversions were identified. Interestingly, a 647-bp insertion in the promoter of RsVRN1 gene can be directly bound by the DOF transcription repressor RsCDF3, resulting into its low promoter activity and late-bolting phenotype of NAU-LB cultivar. Importantly, introgression of this 647-bp insertion allele, RsVRN1(In-536), into early-bolting genotype could contribute to delayed bolting time, indicating that it is a potential genetic resource for radish late-bolting breeding. Together, this genome resource provides valuable information to facilitate comparative genomic analysis and accelerate genome-guided breeding and improvement in radish.
引用
收藏
页码:990 / 1004
页数:15
相关论文
共 87 条
[1]   Major Impacts of Widespread Structural Variation on Gene Expression and Crop Improvement in Tomato [J].
Alonge, Michael ;
Wang, Xingang ;
Benoit, Matthias ;
Soyk, Sebastian ;
Pereira, Lara ;
Zhang, Lei ;
Suresh, Hamsini ;
Ramakrishnan, Srividya ;
Maumus, Florian ;
Ciren, Danielle ;
Levy, Yuval ;
Harel, Tom Hai ;
Shalev-Schlosser, Gili ;
Amsellem, Ziva ;
Razifard, Hamid ;
Caicedo, Ana L. ;
Tieman, Denise M. ;
Klee, Harry ;
Kirsche, Melanie ;
Aganezov, Sergey ;
Ranallo-Benavidez, T. Rhyker ;
Lemmon, Zachary H. ;
Kim, Jennifer ;
Robitaille, Gina ;
Kramer, Melissa ;
Goodwin, Sara ;
McCombie, W. Richard ;
Hutton, Samuel ;
Van Eck, Joyce ;
Gillis, Jesse ;
Eshed, Yuval ;
Sedlazeck, Fritz J. ;
van der Knaap, Esther ;
Schatz, Michael C. ;
Lippman, Zachary B. .
CELL, 2020, 182 (01) :145-+
[2]   Variation in abundance of predicted resistance genes in the Brassica oleracea pangenome [J].
Bayer, Philipp E. ;
Golicz, Agnieszka A. ;
Tirnaz, Soodeh ;
Chan, Chon-Kit Kenneth ;
Edwards, David ;
Batle, Jacqueline .
PLANT BIOTECHNOLOGY JOURNAL, 2019, 17 (04) :789-800
[3]  
Blanco Enrique, 2007, Curr Protoc Bioinformatics, VChapter 4, DOI 10.1002/0471250953.bi0403s18
[4]   Transposable element insertion: a hidden major source of domesticated phenotypic variation in Brassica rapa [J].
Cai, Xu ;
Lin, Runmao ;
Liang, Jianli ;
King, Graham J. ;
Wu, Jian ;
Wang, Xiaowu .
PLANT BIOTECHNOLOGY JOURNAL, 2022, 20 (07) :1298-1310
[5]   Impacts of allopolyploidization and structural variation on intraspecific diversification in Brassica rapa [J].
Cai, Xu ;
Chang, Lichun ;
Zhang, Tingting ;
Chen, Haixu ;
Zhang, Lei ;
Lin, Runmao ;
Liang, Jianli ;
Wu, Jian ;
Freeling, Michael ;
Wang, Xiaowu .
GENOME BIOLOGY, 2021, 22 (01)
[6]   ERF1 delays flowering through direct inhibition of FLOWERING LOCUS T expression in Arabidopsis [J].
Chen, Yanli ;
Zhang, Liping ;
Zhang, Haiyan ;
Chen, Ligang ;
Yu, Diqiu .
JOURNAL OF INTEGRATIVE PLANT BIOLOGY, 2021, 63 (10) :1712-1723
[7]   The control of flowering time by environmental factors [J].
Cho, Lae-Hyeon ;
Yoon, Jinmi ;
An, Gynheung .
PLANT JOURNAL, 2017, 90 (04) :708-719
[8]   A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3 [J].
Cingolani, Pablo ;
Platts, Adrian ;
Wang, Le Lily ;
Coon, Melissa ;
Tung Nguyen ;
Wang, Luan ;
Land, Susan J. ;
Lu, Xiangyi ;
Ruden, Douglas M. .
FLY, 2012, 6 (02) :80-92
[9]   Multifaceted role of cycling DOF factor 3 (CDF3) in the regulation of flowering time and abiotic stress responses in Arabidopsis [J].
Corrales, Alba-Rocio ;
Carrillo, Laura ;
Lasierra, Pilar ;
Nebauer, Sergio G. ;
Dominguez-Figueroa, Jose ;
Renau-Morata, Begona ;
Pollmann, Stephan ;
Granell, Antonio ;
Molina, Rosa-Victoria ;
Vicente-Carbajosa, Jesus ;
Medina, Joaquin .
PLANT CELL AND ENVIRONMENT, 2017, 40 (05) :748-764
[10]   CAFE: a computational tool for the study of gene family evolution [J].
De Bie, T ;
Cristianini, N ;
Demuth, JP ;
Hahn, MW .
BIOINFORMATICS, 2006, 22 (10) :1269-1271