Resolving heterogeneity in dynamics of synchronization stability within the salience network in autism spectrum disorder

被引:7
作者
Guo, Xiaonan [1 ,2 ]
Zhang, Xia [1 ,2 ]
Liu, Junfeng [3 ]
Zhai, Guangjin [1 ,2 ]
Zhang, Tao [1 ,2 ]
Zhou, Rongjuan [4 ]
Lu, Huibin [1 ,2 ]
Gao, Le [1 ,2 ]
机构
[1] Yanshan Univ, Sch Informat Sci & Engn, Qinhuangdao 066004, Peoples R China
[2] Yanshan Univ, Hebei Key Lab Informat Transmiss & Signal Proc, Qinhuangdao 066004, Peoples R China
[3] Sichuan Univ, West China Hosp, Dept Neurol, Chengdu 610041, Peoples R China
[4] Matern & Child Hlth Hosp Qinhuangdao, Qinhuangdao 066000, Peoples R China
基金
中国国家自然科学基金;
关键词
Autism spectrum disorder; Salience network; Synchronization stability; Heterogeneity; Resting-state functional magnetic resonance imaging; RESTING-STATE FMRI; FUNCTIONAL CONNECTIVITY; BRAIN CONNECTIVITY; CHILDREN; CLASSIFICATION; ATTENTION; SEVERITY; DEFAULT; IMPACT;
D O I
10.1016/j.pnpbp.2024.110956
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Background: Heterogeneity in resting-state functional connectivity (FC) are one of the characteristics of autism spectrum disorder (ASD). Traditional resting-state FC primarily focuses on linear correlations, ignoring the nonlinear properties involved in synchronization between networks or brain regions. Methods: In the present study, the cross-recurrence quantification analysis, a nonlinear method based on dynamical systems, was utilized to quantify the synchronization stability between brain regions within the salience network (SN) of ASD. Using the resting-state functional magnetic resonance imaging data of 207 children (ASD/typically-developing controls (TC): 105/102) in Autism Brain Imaging Data Exchange database, we analyzed the laminarity and trapping time differences of the synchronization stability between the ASD subtype derived by a K-means clustering analysis and the TC group, and examined the relationship between synchronization stability and the severity of clinical symptoms of the ASD subtypes. Results: Based on the synchronization stability within the SN of ASD, we identified two subtypes that showed opposite changes in synchronization stability relative to the TC group. In addition, the synchronization stability of ASD subtypes 1 and 2 can predict the social interaction and communication impairments, respectively. Conclusions: These findings reveal that ASD subgroups with different patterns of synchronization stability within the SN appear distinct clinical symptoms, and highlight the importance of exploring the potential neural mechanism of ASD from a nonlinear perspective.
引用
收藏
页数:9
相关论文
共 77 条
[1]   Patterns of Atypical Functional Connectivity and Behavioral Links in Autism Differ Between Default, Salience, and Executive Networks [J].
Abbott, Angela E. ;
Nair, Aarti ;
Keown, Christopher L. ;
Datko, Michael ;
Jahedi, Afrooz ;
Fishman, Inna ;
Muller, Ralph-Axel .
CEREBRAL CORTEX, 2016, 26 (10) :4034-4045
[2]   Sex differences in autism: a resting-state fMRI investigation of functional brain connectivity in males and females [J].
Alaerts, Kaat ;
Swinnen, Stephan P. ;
Wenderoth, Nicole .
SOCIAL COGNITIVE AND AFFECTIVE NEUROSCIENCE, 2016, 11 (06) :1002-1016
[3]  
Almeida TP, 2019, IEEE ENG MED BIO, P2277, DOI [10.1109/EMBC.2019.8857497, 10.1109/embc.2019.8857497]
[4]   The promise and the pitfalls of autism research: An introductory note for new autism researchers [J].
Amaral, David G. .
BRAIN RESEARCH, 2011, 1380 :3-9
[5]  
American Psychiatric Association, 2013, Diagnostic and Statistical Manual of Mental Disorders, DOI DOI 10.1176/APPI.BOOKS.9780890425596
[6]   A Review of Resting-State Analysis Methods [J].
Azeez, Azeezat K. ;
Biswal, Bharat B. .
NEUROIMAGING CLINICS OF NORTH AMERICA, 2017, 27 (04) :581-+
[7]   Prevalence of Autism Spectrum Disorder Among Children Aged 8 Years - Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2014 [J].
Baio, Jon ;
Wiggins, Lisa ;
Christensen, Deborah L. ;
Maenner, Matthew J. ;
Daniels, Julie ;
Warren, Zachary ;
Kurzius-Spencer, Margaret ;
Zahorodny, Walter ;
Rosenberg, Cordelia Robinson ;
White, Tiffany ;
Durkin, Maureen S. ;
Imm, Pamela ;
Nikolaou, Loizos ;
Yeargin-Allsopp, Marshalyn ;
Lee, Li-Ching ;
Harrington, Rebecca ;
Lopez, Maya ;
Fitzgerald, Robert T. ;
Hewitt, Amy ;
Pettygrove, Sydney ;
Constantino, John N. ;
Vehorn, Alison ;
Shenouda, Josephine ;
Hall-Lande, Jennifer ;
Braun, Kim Van Naarden ;
Dowling, Nicole F. .
MMWR SURVEILLANCE SUMMARIES, 2018, 67 (06) :1-23
[8]   A big-world network in ASD: Dynamical connectivity analysis reflects a deficit in long-range connections and an excess of short-range connections [J].
Barttfeld, Pablo ;
Wicker, Bruno ;
Cukier, Sebastian ;
Navarta, Silvana ;
Lew, Sergio ;
Sigman, Mariano .
NEUROPSYCHOLOGIA, 2011, 49 (02) :254-263
[9]   Model-free analysis of brain fMRI data by recurrence quantification [J].
Bianciardi, Marta ;
Sirabella, Paolo ;
Hagberg, Gisela E. ;
Giuliani, Alessandro ;
Zbilut, Joseph P. ;
Colosimo, Alfredo .
NEUROIMAGE, 2007, 37 (02) :489-503
[10]   Power failure: why small sample size undermines the reliability of neuroscience [J].
Button, Katherine S. ;
Ioannidis, John P. A. ;
Mokrysz, Claire ;
Nosek, Brian A. ;
Flint, Jonathan ;
Robinson, Emma S. J. ;
Munafo, Marcus R. .
NATURE REVIEWS NEUROSCIENCE, 2013, 14 (05) :365-376