Electrochemical Probing the Site Reactivity in Iron Single-Atom Catalysts for Electrocatalytic Nitrate Reduction to Ammonia

被引:12
|
作者
Li, Hongmei [1 ]
Li, Panpan [2 ]
Guo, Yong [1 ]
Jin, Zhaoyu [3 ]
机构
[1] Sichuan Univ, Coll Chem, Chengdu 610065, Peoples R China
[2] Sichuan Univ, Coll Mat Sci & Engn, Chengdu 610065, Peoples R China
[3] Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, Chengdu 611731, Peoples R China
关键词
OXYGEN REDUCTION; TURNOVER FREQUENCY; PERFORMANCE; PROGRESS; DENSITY; CARBON;
D O I
10.1021/acs.analchem.3c05095
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Single-atom catalysts (SACs), specifically iron single atoms dispersed on nitrogen-doped carbon (Fe-NC), have shown promising potential in the electrocatalytic reduction of nitrate to ammonia (NitRR), but there is a lack of understanding of their intrinsic activity. The conventional measurements often overlook the intrinsic performance of SACs, leading to significant underestimation. This study presents an in situ electrochemical probing protocol, using two poisoning molecules (SCN- and NO2 (-)), to characterize the reactivity of Fe sites in Fe-NC SACs for NitRR. The technique aids in quantifying the yield rate of ammonia on Fe sites and the active site number. The findings reveal the intrinsic turnover frequency (TOF) based on the number and ammonia yield rate of Fe sites, challenging the current understanding of SACs' inherent performances. This unique approach holds considerable potential for determining the intrinsic activity of other SACs in complex reactions, opening new avenues for the exploration of electrocatalytic processes.
引用
收藏
页码:997 / 1002
页数:6
相关论文
共 50 条
  • [1] Single-atom catalysts for electrocatalytic nitrate reduction into ammonia
    Chao, Guojie
    Wang, Jian
    Zong, Wei
    Fan, Wei
    Xue, Tiantian
    Zhang, Longsheng
    Liu, Tianxi
    NANOTECHNOLOGY, 2024, 35 (43)
  • [2] Rational design of iron single-atom catalysts for electrochemical nitrate reduction to produce ammonia
    Xi Chen
    Xinlei Ji
    Jia Kou
    Discover Chemical Engineering, 3 (1):
  • [3] Recent advances in single-atom catalysts for electrochemical nitrate reduction to ammonia
    Yang, Yilin
    Zhu, Jiaojiao
    Li, Wenfang
    Zhou, Miaoen
    Ye, Jingrui
    He, Guangyu
    Chen, Haiqun
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2025, 13 (01):
  • [4] Screening WS2-based single-atom catalysts for electrocatalytic nitrate reduction to ammonia
    Tursun, Mamutjan
    Abdukayum, Abdukader
    Wu, Chao
    Wang, Caihong
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 73 : 183 - 190
  • [5] Transition metal single-atom electrocatalytic reduction catalyst for nitrate to ammonia
    Mo, Zhenlin
    Mu, Jincheng
    Liu, Baojun
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2024, 969
  • [6] Leveraging machine learning to expedite screening of single-atom catalysts in electrochemical nitrate reduction to ammonia
    Lu, Zhongli
    Liu, Jiming
    Li, Houfen
    Li, Rui
    Zhang, Xiao
    Jian, Xuan
    Gao, Xiaoming
    Zhang, Xuqian
    Wu, Yanze
    Yue, Xiuping
    JOURNAL OF ALLOYS AND COMPOUNDS, 2025, 1010
  • [7] Revealing the pH-dependent mechanism of nitrate electrochemical reduction to ammonia on single-atom catalysts
    Yan, Jingjing
    Xu, Haoxiang
    Chang, Le
    Lin, Aijun
    Cheng, Daojian
    NANOSCALE, 2022, 14 (41) : 15422 - 15431
  • [8] Boron Regulated Fe Single-Atom Structures for Electrocatalytic Nitrate Reduction to Ammonia
    Lu, Xihui
    Wei, Jinshan
    Lin, Hexing
    Li, Yi
    Li, Ya-yun
    ACS APPLIED NANO MATERIALS, 2024, 7 (12) : 14654 - 14664
  • [9] Single-Atom Catalysts for the Electrocatalytic Reduction of Nitrogen to Ammonia under Ambient Conditions
    Qiu, Yuan
    Peng, Xianyun
    Lue, Fang
    Mi, Yuying
    Zhuo, Longchao
    Ren, Junqiang
    Liu, Xijun
    Luo, Jun
    CHEMISTRY-AN ASIAN JOURNAL, 2019, 14 (16) : 2770 - 2779
  • [10] Efficient electrochemical reduction of nitrate to ammonia over metal-organic framework single-atom catalysts
    Shan, Lutong
    Ma, Yujie
    Xu, Shaojun
    Zhou, Meng
    He, Meng
    Sheveleva, Alena M.
    Cai, Rongsheng
    Lee, Daniel
    Cheng, Yongqiang
    Tang, Boya
    Han, Bing
    Chen, Yinlin
    An, Lan
    Zhou, Tianze
    Wilding, Martin
    Eggeman, Alexander S.
    Tuna, Floriana
    Mcinnes, Eric J. L.
    Day, Sarah J.
    Thompson, Stephen P.
    Haigh, Sarah J.
    Kang, Xinchen
    Han, Buxing
    Schroder, Martin
    Yang, Sihai
    COMMUNICATIONS MATERIALS, 2024, 5 (01)