3D Quantum Anomalous Hall Effect in Magnetic Topological Insulator Trilayers of Hundred-Nanometer Thickness

被引:2
作者
Zhao, Yi-Fan [1 ]
Zhang, Ruoxi [1 ]
Sun, Zi-Ting [2 ]
Zhou, Ling-Jie [1 ]
Zhuo, Deyi [1 ]
Yan, Zi-Jie [1 ]
Yi, Hemian [1 ]
Wang, Ke [3 ]
Chan, Moses H. W. [1 ]
Liu, Chao-Xing [1 ]
Law, K. T. [2 ]
Chang, Cui-Zu [1 ]
机构
[1] Penn State Univ, Dept Phys, University Pk, PA 16802 USA
[2] Hong Kong Univ Sci & Technol, Dept Phys, Clear Water Bay, Hong Kong 999077, Peoples R China
[3] Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA
关键词
axion physics; chiral edge channel; magnetic topological insulator; molecular beam epitaxy; quantum anomalous Hall insulator; BI2SE3; BI2TE3; STATE;
D O I
10.1002/adma.202310249
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Magnetic topological states refer to a class of exotic phases in magnetic materials with the non-trivial topological property determined by magnetic spin configurations. An example of such states is the quantum anomalous Hall (QAH) state, which is a zero magnetic field manifestation of the quantum Hall effect. Current research in this direction focuses on QAH insulators with a thickness of less than 10 nm. Here, molecular beam epitaxy (MBE) is employed to synthesize magnetic TI trilayers with a thickness of up to approximate to 106 nm. It is found that these samples exhibit well-quantized Hall resistance and vanishing longitudinal resistance at zero magnetic field. By varying the magnetic dopants, gate voltages, temperature, and external magnetic fields, the properties of these thick QAH insulators are examined and the robustness of the 3D QAH effect is demonstrated. The realization of the well-quantized 3D QAH effect indicates that the nonchiral side surface states of the thick magnetic TI trilayers are gapped and thus do not affect the QAH quantization. The 3D QAH insulators of hundred-nanometer thickness provide a promising platform for the exploration of fundamental physics, including axion physics and image magnetic monopole, and the advancement of electronic and spintronic devices to circumvent Moore's law. The first work in synthesizing 3D quantum anomalous Hall (QAH) insulators with a thickness of one hundred nanometers, exceeding ten times the thickest QAH sample record, is reported. The hundred-nanometer-thick QAH insulators provide a promising platform for the exploration of the topological magnetoelectric effect, image magnetic monopole, as well as high-order topological insulator (TI) phase.image
引用
收藏
页数:9
相关论文
共 48 条
[1]   Precise Quantization of the Anomalous Hall Effect near Zero Magnetic Field [J].
Bestwick, A. J. ;
Fox, E. J. ;
Kou, Xufeng ;
Pan, Lei ;
Wang, Kang L. ;
Goldhaber-Gordon, D. .
PHYSICAL REVIEW LETTERS, 2015, 114 (18)
[2]  
Chang CZ, 2023, REV MOD PHYS, V95, DOI [10.1103/RevModPhys.96.011002, 10.1103/RevModPhys.95.011002]
[3]   Observation of the Quantum Anomalous Hall Insulator to Anderson Insulator Quantum Phase Transition and its Scaling Behavior [J].
Chang, Cui-Zu ;
Zhao, Weiwei ;
Li, Jian ;
Jain, J. K. ;
Liu, Chaoxing ;
Moodera, Jagadeesh S. ;
Chan, Moses H. W. .
PHYSICAL REVIEW LETTERS, 2016, 117 (12)
[4]   Zero-Field Dissipationless Chiral Edge Transport and the Nature of Dissipation in the Quantum Anomalous Hall State [J].
Chang, Cui-Zu ;
Zhao, Weiwei ;
Kim, Duk Y. ;
Wei, Peng ;
Jain, J. K. ;
Liu, Chaoxing ;
Chan, Moses H. W. ;
Moodera, Jagadeesh S. .
PHYSICAL REVIEW LETTERS, 2015, 115 (05)
[5]  
Chang CZ, 2015, NAT MATER, V14, P473, DOI [10.1038/nmat4204, 10.1038/NMAT4204]
[6]   Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator [J].
Chang, Cui-Zu ;
Zhang, Jinsong ;
Feng, Xiao ;
Shen, Jie ;
Zhang, Zuocheng ;
Guo, Minghua ;
Li, Kang ;
Ou, Yunbo ;
Wei, Pang ;
Wang, Li-Li ;
Ji, Zhong-Qing ;
Feng, Yang ;
Ji, Shuaihua ;
Chen, Xi ;
Jia, Jinfeng ;
Dai, Xi ;
Fang, Zhong ;
Zhang, Shou-Cheng ;
He, Ke ;
Wang, Yayu ;
Lu, Li ;
Ma, Xu-Cun ;
Xue, Qi-Kun .
SCIENCE, 2013, 340 (6129) :167-170
[7]  
Checkelsky JG, 2014, NAT PHYS, V10, P731, DOI [10.1038/NPHYS3053, 10.1038/nphys3053]
[8]   Observation of the Zero Hall Plateau in a Quantum Anomalous Hall Insulator [J].
Feng, Yang ;
Feng, Xiao ;
Ou, Yunbo ;
Wang, Jing ;
Liu, Chang ;
Zhang, Liguo ;
Zhao, Dongyang ;
Jiang, Gaoyuan ;
Zhang, Shou-Cheng ;
He, Ke ;
Ma, Xucun ;
Xue, Qi-Kun ;
Wang, Yayu .
PHYSICAL REVIEW LETTERS, 2015, 115 (12)
[9]   Any axion insulator must be a bulk three-dimensional topological insulator [J].
Fijalkowski, K. M. ;
Liu, N. ;
Hartl, M. ;
Winnerlein, M. ;
Mandal, P. ;
Coschizza, A. ;
Fothergill, A. ;
Grauer, S. ;
Schreyeck, S. ;
Brunner, K. ;
Greiter, M. ;
Thomale, R. ;
Gould, C. ;
Molenkamp, L. W. .
PHYSICAL REVIEW B, 2021, 103 (23)
[10]   Part-per-million quantization and current-induced breakdown of the quantum anomalous Hall effect [J].
Fox, E. J. ;
Rosen, I. T. ;
Yang, Yanfei ;
Jones, George R. ;
Elmquist, Randolph E. ;
Kou, Xufeng ;
Pan, Lei ;
Wang, Kang L. ;
Goldhaber-Gordon, D. .
PHYSICAL REVIEW B, 2018, 98 (07)