Understanding how microbial electrolysis cell assisted anaerobic digestion enhances triclocarban dechlorination in sludge

被引:7
作者
Long, Sha [1 ,2 ]
Fu, Qizi [1 ,2 ]
Hao, Zhixiang [1 ,2 ]
Sun, Luyang [1 ,2 ]
Li, Zihan [1 ,2 ]
Guo, Yike [1 ,2 ]
Liu, Xuran [1 ,2 ]
Song, Fengming [3 ]
Wang, Dongbo [1 ,2 ]
Wang, Wenming [3 ]
机构
[1] Hunan Univ, Coll Environm Sci & Engn, Minist Educ, Changsha 410082, Peoples R China
[2] Hunan Univ, Key Lab Environm Biol & Pollut Control, Minist Educ, Changsha 410082, Peoples R China
[3] Hunan Pilot Yanghu Reclaimed Water Co Ltd, Changsha 410082, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Waste activated sludge; Anaerobic digestion; Triclocarban; Biodegradation; Dechlorination; Metagenomic analysis; PERSONAL CARE PRODUCTS; WATER TREATMENT PLANTS; SEWAGE-SLUDGE; TRANSFORMATION PRODUCTS; ENVIRONMENTAL RISK; MASS-BALANCE; TRICLOSAN; PHARMACEUTICALS; BACTERIA; INSIGHTS;
D O I
10.1016/j.cej.2023.146371
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Microbial electrolysis cell assisted anaerobic digestion (MEC-AD) has recently been considered as an efficient method for degradations of refractory pollutants. To date, however, knowledge about whether and how MEC-AD enhances the degradations of refractory pollutants in sludge remains largely unknown. This study therefore aims to fill this knowledge gap through investigating the transformation of triclocarban (TCC), a widely used antimicrobial agent, in MEC-AD reactors. Experimental results showed that over 83.3 % of TCC was dechlorinated to less toxic dichlorocarbanilide, monochlorocarbanilide and carbanilide in MEC-AD reactors. However, the mass loss of TCC in AD reactor (the electrodeless control) was merely 0.53 %. The presence of electrodes promoted TCC dechlorination in MEC-AD reactors, while the applied voltages (0.6 and 0.8 V) promoted hydrogenotrophic methanogenesis. H2-utilizing Nitrospira and homoacetogenic Acetobacterium were recognized as potential TCC dechlorinators, with their abundances in the planktonic sludge of MEC-AD reactors being 5.0-16.5 times higher than those in AD reactor. The carbon brush electrodes in MEC-AD reactors caused the enrichment of acetoclastic Methanothrix and the complete removal of acetic acid, which thereby thermodynamically accelerated homoacetogenesis and H2-producing acetogenesis in the planktonic sludge. Moreover, the direct interspecies electron transfer using hydrogenase as terminal electron acceptor was enhanced in the planktonic sludge of MEC-AD reactors, which could also improve H2 production rate and stimulate the growth and activity of TCC dechlorinators.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Mitigation of Triclocarban Inhibition in Microbial Electrolysis Cell-Assisted Anaerobic Digestion
    Long, Sha
    Liu, Xuran
    Xiao, Jun
    Ren, Dejiang
    Liu, Zewei
    Fu, Qizi
    He, Dandan
    Wang, Dongbo
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2024, 58 (21) : 9272 - 9282
  • [2] Enhancement of Biogas Production in Anaerobic Digestion Using Microbial Electrolysis Cell Seed Sludge
    Lee, Myoung Eun
    Ahn, Yongtae
    Shin, Seung Gu
    Chung, Jae Woo
    ENERGIES, 2022, 15 (19)
  • [3] Sludge-based biochar-assisted thermophilic anaerobic digestion of waste-activated sludge in microbial electrolysis cell for methane production
    Yin, Changkai
    Shen, Yanwen
    Yuan, Rongxue
    Zhu, Nanwen
    Yuan, Haiping
    Lou, Ziyang
    BIORESOURCE TECHNOLOGY, 2019, 284 : 315 - 324
  • [4] Effects of antibiotics on anaerobic digestion of sewage sludge: Performance of anaerobic digestion and structure of the microbial community
    Wu, Qingdan
    Zou, Dongsheng
    Zheng, Xiaochen
    Liu, Fen
    Li, Longcheng
    Xiao, Zhihua
    SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 845
  • [5] Bioelectrochemical enhancement of the anaerobic digestion of thermal-alkaline pretreated sludge in microbial electrolysis cells
    Xiao, Benyi
    Chen, Xia
    Han, Yunping
    Liu, Junxin
    Guo, Xuesong
    RENEWABLE ENERGY, 2018, 115 : 1177 - 1183
  • [6] Evaluation on direct interspecies electron transfer in anaerobic sludge digestion of microbial electrolysis cell
    Zhao, Zisheng
    Zhang, Yaobin
    Quan, Xie
    Zhao, Huimin
    BIORESOURCE TECHNOLOGY, 2016, 200 : 235 - 244
  • [7] Occurrence and fate of antimicrobial triclocarban and its transformation products in municipal sludge during advanced anaerobic digestion using microwave pretreatment
    Kor-Bicakci, Gokce
    Abbott, Timothy
    Ubay-Cokgor, Emine
    Eskicioglu, Cigdem
    SCIENCE OF THE TOTAL ENVIRONMENT, 2020, 705
  • [8] Microbial communities change in an anaerobic digestion after application of microbial electrolysis cells
    Lee, Beom
    Park, Jun-Gyu
    Shin, Won-Beom
    Tian, Dong-Jie
    Jun, Hang-Bae
    BIORESOURCE TECHNOLOGY, 2017, 234 : 273 - 280
  • [9] Meta-analysis of bioenergy recovery and anaerobic digestion in integrated systems of anaerobic digestion and microbial electrolysis cell
    Amin, Mohammad Mehdi
    Arvin, Amin
    Feizi, Awat
    Dehdashti, Bahare
    Torkian, Ayoob
    BIOCHEMICAL ENGINEERING JOURNAL, 2022, 178
  • [10] A strategy for enhancing anaerobic digestion of waste activated sludge: Driving anodic oxidation by adding nitrate into microbial electrolysis cell
    Peng, Hong
    Zhao, Zhiqiang
    Xiao, Hong
    Yang, Yafei
    Zhao, Huimin
    Zhang, Yaobin
    JOURNAL OF ENVIRONMENTAL SCIENCES, 2019, 81 : 34 - 42