Parallel Nanosheet Arrays for Industrial Oxygen Production

被引:76
作者
Kang, Jianxin [1 ]
Liu, Gui [1 ]
Hu, Qi [1 ,2 ]
Huang, Yezeng [3 ]
Liu, Li-Min [2 ]
Dong, Leiting [3 ]
Teobaldi, Gilberto [4 ,5 ]
Guo, Lin [1 ]
机构
[1] Beihang Univ, Beijing Adv Innovat Ctr Biomed Engn, Sch Chem, Key Lab Bioinspired Smart Interfacial Sci & Techno, Beijing 100191, Peoples R China
[2] Beihang Univ, Sch Phys, Beijing 100191, Peoples R China
[3] Beihang Univ, Sch Aeronaut Sci & Engn, Beijing 100191, Peoples R China
[4] Rutherford Appleton Lab, Sci Comp Dept, STFC UKRI, Didcot OX11 0QX, England
[5] Univ Southampton, Sch Chem, Southampton SO17 1BJ, England
基金
中国国家自然科学基金;
关键词
NUCLEATION; GROWTH;
D O I
10.1021/jacs.3c05688
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
According to the traditional nucleation theory, crystals in solution nucleate under thermal fluctuations with random crystal orientation. Thus, nanosheet arrays grown on a substrate always exhibit disordered arrangements, which impede mass transfer during catalysis. To overcome this limitation, here, we demonstrate stress-induced, oriented nucleation and growth of nanosheet arrays. A regularly self-growing parallel nanosheet array is realized on a curved growth substrate. During electrochemical oxygen production, the ordered array maintains a steady flow of liquids in the microchannels, suppressing the detrimental production of flow-blocking oxygen bubbles typical of randomly oriented nanosheet arrays. Controllable parallel arrays, fully covered fluffy-like ultrathin nanosheets, and amorphous disordered structures altogether enable full-scale design of hierarchical interfaces from the micro- to the atomic scale, significantly improving the otherwise sluggish kinetics of oxygen evolution toward industrial ultrafast production. Record-high ultrafast oxygen production of 135 L<middle dot>min(-1)<middle dot>m(-2) with high working current of 4000 mA<middle dot>cm(-2) is steadily achieved at a competitively low cell voltage of 2.862 V. These results and related insights lay the basis for further developments in oriented nucleation and growth of crystals beyond classical nucleation approaches, with benefits for large-scale, industrial electrochemical processes as shown here for ultrafast oxygen production.
引用
收藏
页码:25143 / 25149
页数:7
相关论文
共 28 条
[1]   High-Entropy Metal Sulfide Nanoparticles Promise High-Performance Oxygen Evolution Reaction [J].
Cui, Mingjin ;
Yang, Chunpeng ;
Li, Boyang ;
Dong, Qi ;
Wu, Meiling ;
Hwang, Sooyeon ;
Xie, Hua ;
Wang, Xizheng ;
Wang, Guofeng ;
Hu, Liangbing .
ADVANCED ENERGY MATERIALS, 2021, 11 (03)
[2]   Crystallization by particle attachment in synthetic, biogenic, and geologic environments [J].
De Yoreo, James J. ;
Gilbert, Pupa U. P. A. ;
Sommerdijk, Nico A. J. M. ;
Penn, R. Lee ;
Whitelam, Stephen ;
Joester, Derk ;
Zhang, Hengzhong ;
Rimer, Jeffrey D. ;
Navrotsky, Alexandra ;
Banfield, Jillian F. ;
Wallace, Adam F. ;
Michel, F. Marc ;
Meldrum, Fiona C. ;
Coelfen, Helmut ;
Dove, Patricia M. .
SCIENCE, 2015, 349 (6247)
[3]   Hydrogen Spillover-Bridged Volmer/Tafel Processes EnablingAmpere-Level Current Density Alkaline Hydrogen EvolutionReaction under Low Overpotential [J].
Fu, Huai Qin ;
Zhou, Min ;
Liu, Peng Fei ;
Liu, Porun ;
Yin, Huajie ;
Sun, Kai Zhi ;
Yang, Hua Gui ;
Al-Mamun, Mohammad ;
Hu, Peijun ;
Wang, Hai-Feng ;
Zhao, Huijun .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2022, 144 (13) :6028-6039
[4]   Recent Developments in the Crystallization Process: Toward the Pharmaceutical Industry [J].
Gao, Zhenguo ;
Rohani, Sohrab ;
Gong, Junbo ;
Wang, Jingkang .
ENGINEERING, 2017, 3 (03) :343-353
[5]   Atomic force microscopic imaging of seeded fibril formation and fibril branching by the Alzheimer's disease amyloid-β protein [J].
Harper, JD ;
Lieber, CM ;
Lansbury, PT .
CHEMISTRY & BIOLOGY, 1997, 4 (12) :951-959
[6]   Reversible disorder-order transitions in atomic crystal nucleation [J].
Jeon, Sungho ;
Heo, Taeyeong ;
Hwang, Sang-Yeon ;
Ciston, Jim ;
Bustillo, Karen C. ;
Reed, Bryan W. ;
Ham, Jimin ;
Kang, Sungsu ;
Kim, Sungin ;
Lim, Joowon ;
Lim, Kitaek ;
Kim, Ji Soo ;
Kang, Min-Ho ;
Bloom, Ruth S. ;
Hong, Sukjoon ;
Kim, Kwanpyo ;
Zettl, Alex ;
Kim, Woo Youn ;
Ercius, Peter ;
Park, Jungwon ;
Lee, Won Chul .
SCIENCE, 2021, 371 (6528) :498-+
[7]   Graphene/MoS2/FeCoNi(OH)x and Graphene/MoS2/FeCoNiPx multilayer-stacked vertical nanosheets on carbon fibers for highly efficient overall water splitting [J].
Ji, Xixi ;
Lin, Yanhong ;
Zeng, Jie ;
Ren, Zhonghua ;
Lin, Zijia ;
Mu, Yongbiao ;
Qiu, Yejun ;
Yu, Jie .
NATURE COMMUNICATIONS, 2021, 12 (01)
[8]   Electrochemically Fabricated Superhydrophilic/Superaerophobic Manganese Oxide Nanowires at Discontinuous Solid-Liquid Interfaces for Enhanced Oxygen Evolution Performances [J].
Jin, Jiao ;
Li, Li ;
Nie, Xiaoyan ;
Xiao, Tianliang ;
Liu, Zhaoyue .
ADVANCED MATERIALS INTERFACES, 2022, 9 (02)
[9]   Surface and Interface Coordination Chemistry Learned from Model Heterogeneous Metal Nanocatalysts: From Atomically Dispersed Catalysts to Atomically Precise Clusters [J].
Jing, Wentong ;
Shen, Hui ;
Qin, Ruixuan ;
Wu, Qingyuan ;
Liu, Kunlong ;
Zheng, Nanfeng .
CHEMICAL REVIEWS, 2023, 123 (09) :5948-6002
[10]   Nonclassical nucleation and growth of inorganic nanoparticles [J].
Lee, Jisoo ;
Yang, Jiwoong ;
Kwon, Soon Gu ;
Hyeon, Taeghwan .
NATURE REVIEWS MATERIALS, 2016, 1 (08)