Plant Parasitic Nematode Identification in Complex Samples with Deep Learning

被引:3
作者
Agarwal, Sahil [1 ]
Curran, Zachary C. [2 ]
Yu, Guohao [1 ]
Mishra, Shova [3 ]
Baniya, Anil [3 ]
Bogale, Mesfin [3 ]
Hughes, Kody [3 ]
Salichs, Oscar [3 ]
Zare, Alina [1 ]
Jiang, Zhe [2 ]
Digennaro, Peter [3 ]
机构
[1] Univ Florida, Dept Elect & Comp Engn, Gainesville, FL 32611 USA
[2] Univ Florida, Dept Comp Informat Sci & Engn, Gainesville, FL 32611 USA
[3] Univ Florida, Dept Entomol & Nematol, Gainesville, FL 32611 USA
关键词
detection; diagnosis; identification; deep learning; method; technique; UNITED-STATES;
D O I
10.2478/jofnem-2023-0045
中图分类号
Q95 [动物学];
学科分类号
071002 ;
摘要
Plant parasitic nematodes are significant contributors to yield loss worldwide, causing devastating losses to every crop species, in every climate. Mitigating these losses requires swift and informed management strategies, centered on identification and quantification of field populations. Current plant parasitic nematode identification methods rely heavily on manual analyses of microscope images by a highly trained nematologist. This mode is not only expensive and time consuming, but often excludes the possibility of widely sharing and disseminating results to inform regional trends and potential emergent issues. This work presents a new public dataset containing annotated images of plant parasitic nematodes from heterologous soil extractions. This dataset serves to propagate new automated methodologies or speedier plant parasitic nematode identification using multiple deep learning object detection models and offers a path towards widely shared tools, results, and meta-analyses.
引用
收藏
页数:7
相关论文
共 28 条
[1]   Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita [J].
Abad, Pierre ;
Gouzy, Jerome ;
Aury, Jean-Marc ;
Castagnone-Sereno, Philippe ;
Danchin, Etienne G. J. ;
Deleury, Emeline ;
Perfus-Barbeoch, Laetitia ;
Anthouard, Veronique ;
Artiguenave, Francois ;
Blok, Vivian C. ;
Caillaud, Marie-Cecile ;
Coutinho, Pedro M. ;
Dasilva, Corinne ;
De Luca, Francesca ;
Deau, Florence ;
Esquibet, Magali ;
Flutre, Timothe ;
Goldstone, Jared V. ;
Hamamouch, Noureddine ;
Hewezi, Tarek ;
Jaillon, Olivier ;
Jubin, Claire ;
Leonetti, Paola ;
Magliano, Marc ;
Maier, Tom R. ;
Markov, Gabriel V. ;
McVeigh, Paul ;
Pesole, Graziano ;
Poulain, Julie ;
Robinson-Rechavi, Marc ;
Sallet, Erika ;
Segurens, Beatrice ;
Steinbach, Delphine ;
Tytgat, Tom ;
Ugarte, Edgardo ;
van Ghelder, Cyril ;
Veronico, Pasqua ;
Baum, Thomas J. ;
Blaxter, Mark ;
Bleve-Zacheo, Teresa ;
Davis, Eric L. ;
Ewbank, Jonathan J. ;
Favery, Bruno ;
Grenier, Eric ;
Henrissat, Bernard ;
Jones, John T. ;
Laudet, Vincent ;
Maule, Aaron G. ;
Quesneville, Hadi ;
Rosso, Marie-Noelle .
NATURE BIOTECHNOLOGY, 2008, 26 (08) :909-915
[2]  
Abade A. D. S., 2021, arXiv
[3]   A deep learning framework to discern and count microscopic nematode eggs [J].
Akintayo, Adedotun ;
Tylka, Gregory L. ;
Singh, Asheesh K. ;
Ganapathysubramanian, Baskar ;
Singh, Arti ;
Sarkar, Soumik .
SCIENTIFIC REPORTS, 2018, 8
[4]  
Barker K. R., 1985, An advanced treatise on Meloidogyne.Volume II: Methodology., P135
[5]  
Benjumea A, 2021, Arxiv, DOI arXiv:2112.11798
[6]   Pest identification via deep residual learning in complex background [J].
Cheng, Xi ;
Zhang, Youhua ;
Chen, Yiqiong ;
Wu, Yunzhi ;
Yue, Yi .
COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2017, 141 :351-356
[7]   Research on plant-parasitic nematode biology conducted by the United States Department of Agriculture - Agricultural Research Service [J].
Chitwood, DJ .
PEST MANAGEMENT SCIENCE, 2003, 59 (6-7) :748-753
[8]   CenterNet: Keypoint Triplets for Object Detection [J].
Duan, Kaiwen ;
Bai, Song ;
Xie, Lingxi ;
Qi, Honggang ;
Huang, Qingming ;
Tian, Qi .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :6568-6577
[9]  
Dutta A., VGG Image Annotator (VIA)
[10]  
Gooris J., 1972, A method for the quantitative extraction of eggs and second stage juveniles of Meloidogyne spp. from soil