IPCONV: Convolution with Multiple Different Kernels for Point Cloud Semantic Segmentation

被引:3
|
作者
Zhang, Ruixiang [1 ]
Chen, Siyang [1 ]
Wang, Xuying [1 ]
Zhang, Yunsheng [1 ,2 ]
机构
[1] Cent South Univ, Sch Geosci & Info Phys, Changsha 410075, Peoples R China
[2] Natl Engn Res Ctr High Speed Railway Construct Tec, Changsha 410075, Peoples R China
基金
中国国家自然科学基金;
关键词
point cloud semantic segmentation; deep neural network; convolution; multi-shape neighborhood; CLASSIFICATION; NETWORK;
D O I
10.3390/rs15215136
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The segmentation of airborne laser scanning (ALS) point clouds remains a challenge in remote sensing and photogrammetry. Deep learning methods, such as KPCONV, have proven effective on various datasets. However, the rigid convolutional kernel strategy of KPCONV limits its potential use for 3D object segmentation due to its uniform approach. To address this issue, we propose an Integrated Point Convolution (IPCONV) based on KPCONV, which utilizes two different convolution kernel point generation strategies, one cylindrical and one a spherical cone, for more efficient learning of point cloud data features. We propose a customizable Multi-Shape Neighborhood System (MSNS) to balance the relationship between these convolution kernel point generations. Experiments on the ISPRS benchmark dataset, LASDU dataset, and DFC2019 dataset demonstrate the validity of our method.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Weakly Supervised Learning for Point Cloud Semantic Segmentation With Dual Teacher
    Yao, Baochen
    Xiao, Hui
    Zhuang, Jiayan
    Peng, Chengbin
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (10) : 6347 - 6354
  • [42] DenseKPNET: Dense Kernel Point Convolutional Neural Networks for Point Cloud Semantic Segmentation
    Li, Yong
    Li, Xu
    Zhang, Zhenxin
    Shuang, Feng
    Lin, Qi
    Jiang, Jincheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [43] DEEP LEARNING FOR SEMANTIC SEGMENTATION OF 3D POINT CLOUD
    Malinverni, E. S.
    Pierdicca, R.
    Paolanti, M.
    Martini, M.
    Morbidoni, C.
    Matrone, F.
    Lingua, A.
    27TH CIPA INTERNATIONAL SYMPOSIUM: DOCUMENTING THE PAST FOR A BETTER FUTURE, 2019, 42-2 (W15): : 735 - 742
  • [44] Recurrent Residual Dual Attention Network for Airborne Laser Scanning Point Cloud Semantic Segmentation
    Zeng, Tao
    Luo, Fulin
    Guo, Tan
    Gong, Xiuwen
    Xue, Jingyun
    Li, Hanshan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [45] A Graph-Voxel Joint Convolution Neural Network for ALS Point Cloud Segmentation
    Zhang, Jinming
    Hu, Xiangyun
    Dai, Hengming
    IEEE ACCESS, 2020, 8 : 139781 - 139791
  • [46] Structure-Aware Convolution for 3D Point Cloud Classification and Segmentation
    Wang, Lei
    Liu, Yuxuan
    Zhang, Shenman
    Yan, Jixing
    Tao, Pengjie
    REMOTE SENSING, 2020, 12 (04)
  • [47] Semantic Point Cloud Segmentation Using Fast Deep Neural Network and DCRF
    Rao, Yunbo
    Zhang, Menghan
    Cheng, Zhanglin
    Xue, Junmin
    Pu, Jiansu
    Wang, Zairong
    SENSORS, 2021, 21 (08)
  • [48] Semantic Context Encoding for Accurate 3D Point Cloud Segmentation
    Liu, Hao
    Guo, Yulan
    Ma, Yanni
    Lei, Yinjie
    Wen, Gongjian
    IEEE TRANSACTIONS ON MULTIMEDIA, 2021, 23 : 2045 - 2055
  • [49] Learning from Synthetic Point Cloud Data for Historical Buildings Semantic Segmentation
    Morbidoni, Christian
    Pierdicca, Roberto
    Paolanti, Marina
    Quattrini, Ramona
    Mammoli, Raissa
    ACM JOURNAL ON COMPUTING AND CULTURAL HERITAGE, 2020, 13 (04):
  • [50] Spatial and Temporal Awareness Network for Semantic Segmentation on Automotive Radar Point Cloud
    Zhang, Ziwei
    Liu, Jun
    Jiang, Guangfeng
    IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2024, 9 (02): : 3520 - 3530