IPCONV: Convolution with Multiple Different Kernels for Point Cloud Semantic Segmentation

被引:5
作者
Zhang, Ruixiang [1 ]
Chen, Siyang [1 ]
Wang, Xuying [1 ]
Zhang, Yunsheng [1 ,2 ]
机构
[1] Cent South Univ, Sch Geosci & Info Phys, Changsha 410075, Peoples R China
[2] Natl Engn Res Ctr High Speed Railway Construct Tec, Changsha 410075, Peoples R China
基金
中国国家自然科学基金;
关键词
point cloud semantic segmentation; deep neural network; convolution; multi-shape neighborhood; CLASSIFICATION; NETWORK;
D O I
10.3390/rs15215136
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The segmentation of airborne laser scanning (ALS) point clouds remains a challenge in remote sensing and photogrammetry. Deep learning methods, such as KPCONV, have proven effective on various datasets. However, the rigid convolutional kernel strategy of KPCONV limits its potential use for 3D object segmentation due to its uniform approach. To address this issue, we propose an Integrated Point Convolution (IPCONV) based on KPCONV, which utilizes two different convolution kernel point generation strategies, one cylindrical and one a spherical cone, for more efficient learning of point cloud data features. We propose a customizable Multi-Shape Neighborhood System (MSNS) to balance the relationship between these convolution kernel point generations. Experiments on the ISPRS benchmark dataset, LASDU dataset, and DFC2019 dataset demonstrate the validity of our method.
引用
收藏
页数:21
相关论文
共 69 条
[31]   VV-NET: Voxel VAE Net with Group Convolutions for Point Cloud Segmentation [J].
Meng, Hsien-Yu ;
Gao, Lin ;
Lai, Yu-Kun ;
Manocha, Dinesh .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :8499-8507
[32]   Power Line Extraction and Reconstruction Methods from Laser Scanning Data: A Literature Review [J].
Munir, Nosheen ;
Awrangjeb, Mohammad ;
Stantic, Bela .
REMOTE SENSING, 2023, 15 (04)
[33]   Classification of ALS Point Cloud with Improved Point Cloud Segmentation and Random Forests [J].
Ni, Huan ;
Lin, Xiangguo ;
Zhang, Jixian .
REMOTE SENSING, 2017, 9 (03)
[34]   Contextual classification of lidar data and building object detection in urban areas [J].
Niemeyer, Joachim ;
Rottensteiner, Franz ;
Soergel, Uwe .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2014, 87 :152-165
[35]   Point Cloud Semantic Segmentation Using a Deep Learning Framework for Cultural Heritage [J].
Pierdicca, Roberto ;
Paolanti, Marina ;
Matrone, Francesca ;
Martini, Massimo ;
Morbidoni, Christian ;
Malinverni, Eva Savina ;
Frontoni, Emanuele ;
Lingua, Andrea Maria .
REMOTE SENSING, 2020, 12 (06)
[36]  
Pulikkaseril C, 2019, 2019 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXHIBITION (OFC)
[37]  
Qi C.R., 2017, Advances in Neural Information Processing Systems
[38]   Volumetric and Multi-View CNNs for Object Classification on 3D Data [J].
Qi, Charles R. ;
Su, Hao ;
Niessner, Matthias ;
Dai, Angela ;
Yan, Mengyuan ;
Guibas, Leonidas J. .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :5648-5656
[39]   RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds [J].
Hu, Qingyong ;
Yang, Bo ;
Xie, Linhai ;
Rosa, Stefano ;
Guo, Yulan ;
Wang, Zhihua ;
Trigoni, Niki ;
Markham, Andrew .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, :11105-11114
[40]   OctNet: Learning Deep 3D Representations at High Resolutions [J].
Riegler, Gernot ;
Ulusoy, Ali Osman ;
Geiger, Andreas .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :6620-6629