Quantitative prediction of corrosion resistance in ferrous alloys: A first-principles study of coupled doping of alloying elements

被引:5
作者
Chen, You [1 ]
Hou, Qingfeng [2 ,3 ]
Wang, Haitao [2 ]
Han, En-Hou [2 ,4 ]
Gao, Mingyang [3 ]
Qiao, Zhiwei [1 ]
机构
[1] Guangzhou Univ, Joint Inst Guangzhou Univ & Inst Corros Sci & Tech, Guangzhou 510006, Peoples R China
[2] Inst Corros Sci & Technol, Guangzhou 510530, Peoples R China
[3] Chinese Acad Sci, Inst Met Res, CAS Key Lab Nucl Mat & Safety Assessment, Shenyang 110016, Peoples R China
[4] South China Univ Technol, Sch Mat Sci & Engn, Guangzhou 510641, Peoples R China
来源
JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T | 2023年 / 26卷
基金
中国国家自然科学基金;
关键词
Ferrous alloys; Corrosion; First-principles calculations; High-throughput; WEATHERING STEEL; BCC IRON; BEHAVIOR; METALS; RUST; FE; AL;
D O I
10.1016/j.jmrt.2023.09.099
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The corrosion resistance of ferrous alloys is greatly influenced by the presence of alloying elements, however, predicting the coupling effects of these elements remains a challenge. In the present paper, the effects of various alloying elements on the corrosion resistance of iron matrix material were investigated using high-throughput density functional theory (DFT) calculations. This work explores the dissolution behavior of metal and alloy surfaces and established correlations between calculated parameters and experimentally measurable values to predict polarization curves and simulate corrosion behavior. The results showed that doping with Cu, P, Ni, Al, Mn, Co, Si, Ti, and Zn on the Fe (110) surface can reduce the corrosion current density of the iron matrix. For Fe-Cu and Fe-Mn steels, coupling P-Ti in Fe-Cu steel and P-Si in Fe-Mn steel can significantly improve their corrosion resistance. The developed model can quantitatively predict material properties and efficiently screen compositions to design corrosion-resistant alloys.(c) 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:7107 / 7115
页数:9
相关论文
共 39 条
  • [1] Surface energy calculation of bcc metals using the analytical equivalent crystal theory method
    Aghemenloh, E.
    Umukoro, J. O.
    Azi, S. O.
    Yusuf, S.
    Idiodi, J. O. A.
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2011, 50 (12) : 3290 - 3296
  • [2] PROJECTOR AUGMENTED-WAVE METHOD
    BLOCHL, PE
    [J]. PHYSICAL REVIEW B, 1994, 50 (24): : 17953 - 17979
  • [3] Structural, electronic, and magnetic properties of bcc iron surfaces
    Blonski, P.
    Kiejna, A.
    [J]. SURFACE SCIENCE, 2007, 601 (01) : 123 - 133
  • [4] Corrosion resistance and mechanical properties of low-alloy steels under atmospheric conditions
    Chen, YY
    Tzeng, HJ
    Wei, LI
    Wang, LH
    Oung, JC
    Shih, HC
    [J]. CORROSION SCIENCE, 2005, 47 (04) : 1001 - 1021
  • [5] Corrosion Behavior of New Weathering Steel in the Environment Simulating Coastal Industrial Atmosphere
    Cui, Wenfang
    Shao, Changjing
    Liu, Chunming
    [J]. ADVANCED MECHANICAL DESIGN, PTS 1-3, 2012, 479-481 : 322 - +
  • [6] Atmospheric corrosion of Ni-advanced weathering steels in marine atmospheres of moderate salinity
    Diaz, I.
    Cano, H.
    de la Fuente, D.
    Chico, B.
    Vega, J. M.
    Morcillo, M.
    [J]. CORROSION SCIENCE, 2013, 76 : 348 - 360
  • [7] Characterization of protective rust on ancient Indian iron using microprobe analyses
    Dillmann, P
    Balasubramaniam, R
    Beranger, G
    [J]. CORROSION SCIENCE, 2002, 44 (10) : 2231 - 2242
  • [8] Fundamentals and advances in magnesium alloy corrosion
    Esmaily, M.
    Svensson, J. E.
    Fajardo, S.
    Birbilis, N.
    Frankel, G. S.
    Virtanen, S.
    Arrabal, R.
    Thomas, S.
    Johansson, L. G.
    [J]. PROGRESS IN MATERIALS SCIENCE, 2017, 89 : 92 - 193
  • [9] Magnetic properties of bcc Iron surfaces and the influence of the chemical environment: electronic structure calculations
    Fischer, Guntram
    Gerber, Iann C.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2015, 27 (01)
  • [10] FRIEDEL J, 1976, ANN PHYS-PARIS, V1, P257