Suppressed thermal transport in mathematically inspired 2D heterosystems

被引:12
|
作者
Wu, Xin [1 ,2 ]
Huang, Xin [1 ]
Yang, Lei [3 ]
Zhang, Zhongwei [4 ]
Guo, Yangyu [5 ]
Volz, Sebastian [1 ,6 ]
Han, Qiang [2 ]
Nomura, Masahiro [1 ]
机构
[1] Univ Tokyo, Inst Ind Sci, Tokyo 1538505, Japan
[2] South China Univ Technol, Sch Civil Engn & Transportat, Dept Engn Mech, Guangzhou 510640, Guangdong, Peoples R China
[3] Tsinghua Univ, Dept Engn Mech, Key Lab Thermal Sci & Power Engn, Minist Educ, Beijing 100084, Peoples R China
[4] Tongji Univ, Ctr Phonon & Thermal Energy Sci, Sch Phys Sci & Engn, Shanghai 200092, Peoples R China
[5] Harbin Inst Technol, Sch Energy Sci & Engn, Harbin 150001, Peoples R China
[6] Univ Tokyo, Lab Integrated Micro & Mechatron Syst, CNRS IIS UMI 2820, Tokyo 1538505, Japan
基金
中国国家自然科学基金;
关键词
Phonon thermal transport; Golomb ruler; 2D lateral heterosystem; Graphene; h-BN; Molecular dynamics; MOLECULAR-DYNAMICS; CONDUCTIVITY;
D O I
10.1016/j.carbon.2023.118264
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In two-dimensional (2D) heterosystems, the contribution of coherent phonon transport makes superlattices with high interface density exhibit unexpected high thermal conductivity. Herein, inspired by mathematics, we demonstrate efficient suppression of phonon thermal transport in a 2D heterosystem constituted of graphene and hexagonal boron nitride based on the Golomb ruler sequences. This design realizes extreme suppression of thermal conductivity with a minimal number of interfaces, and without any defects or dopants. Extensive numerical simulations combined with wave packet analysis show that the Golomb ruler sequence largely cancels the coherent phonon transport. This work, as the first attempt for realizing novel thermal physics using the mathematically inspired Golomb ruler design, provides a new and efficient solution for the suppression of thermal transport in 2D heterosystems.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Investigation of phonon thermal transport in monolayer and bilayer 2D organic C60 networks
    Yang, Chao
    Wang, Ang
    Qi, Haiqing
    Wang, Weitao
    Ji, Wanxiang
    Wang, Xinyu
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2024, 222
  • [42] Unconventional thermal transport enhancement with large atom mass: a comparative study of 2D transition dichalcogenides
    Wang, Huimin
    Qin, Guangzhao
    Li, Guojian
    Wang, Qiang
    Hu, Ming
    2D MATERIALS, 2018, 5 (01):
  • [43] Thermoelectric transport in graphene and 2D layered materials
    Markov, Maxime
    Zebarjadi, Mona
    NANOSCALE AND MICROSCALE THERMOPHYSICAL ENGINEERING, 2019, 23 (02) : 117 - 127
  • [44] Computational screening of 2D anode materials with robust thermal and electrical properties for lithium-ion batteries
    Wan, Zijing
    Chen, Xiaozhen
    Kang, Yilin
    Zhou, Ziqi
    Jiang, Xiaoxue
    Xiang, Zheng
    Xu, Dongwei
    Luo, Xiaobing
    JOURNAL OF ENERGY STORAGE, 2024, 75
  • [45] 2D radial distribution function of silicene
    Chavez-Castillo, M. R.
    Rodriguez-Meza, M. A.
    Meza-Montes, L.
    REVISTA MEXICANA DE FISICA, 2012, 58 (02) : 139 - 143
  • [46] Bending and twisting rigidities of 2D materials
    Vel, Senthil S.
    Maalouf, Serge R.
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2024, 280
  • [47] Recent advances in 2D nanopores for desalination
    Ramanathan, A. A.
    Aqra, M. W.
    Al-Rawajfeh, A. E.
    ENVIRONMENTAL CHEMISTRY LETTERS, 2018, 16 (04) : 1217 - 1231
  • [48] Thermal Transport in a 2D Nanophononic Solid: Role of bi-Phasic Materials Properties on Acoustic Attenuation and Thermal Diffusivity
    Luo, Haoming
    Gravouil, Anthony
    Giordano, Valentina
    Tanguy, Anne
    NANOMATERIALS, 2019, 9 (10)
  • [49] An embedded simulation approach for modeling the thermal conductivity of 2D nanoscale material
    Garg, A.
    Vijayaraghavan, V.
    Wong, C. H.
    Tai, K.
    Gao, Liang
    SIMULATION MODELLING PRACTICE AND THEORY, 2014, 44 : 1 - 13
  • [50] Electrically Insulating Thermal Nano-Oils Using 2D Fillers
    Taha-Tijerina, Jaime
    Narayanan, Tharangattu N.
    Gao, Guanhui
    Rohde, Matthew
    Tsentalovich, Dmitri A.
    Pasquali, Matteo
    Ajayan, Pulickel M.
    ACS NANO, 2012, 6 (02) : 1214 - 1220