ERROR ESTIMATION AND ADAPTIVITY FOR STOCHASTIC COLLOCATION FINITE ELEMENTS PART II: MULTILEVEL APPROXIMATION

被引:1
作者
Bespalov, Alex [1 ]
Silvester, David [2 ]
机构
[1] Univ Birmingham, Sch Math, Birmingham B15 2TT, England
[2] Univ Manchester, Dept Math, Manchester M13 9PL, England
基金
英国工程与自然科学研究理事会;
关键词
stochastic collocation; finite element approximation; PDEs with random data; PARTIAL-DIFFERENTIAL-EQUATIONS; CONVERGENCE;
D O I
10.1137/22M1479361
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A multilevel adaptive refinement strategy for solving linear elliptic partial differential equations with random data is recalled in this work. The strategy extends the a posteriori error estimation framework introduced by Guignard and Nobile in 2018 [SIAM J. Numer. Anal., 56 (2018), pp. 3121--3143] to cover problems with a nonaffine parametric coefficient dependence. A suboptimal, but nonetheless reliable and convenient, implementation of the strategy involves approximation of the decoupled PDE problems with a common finite element approximation space. Computational results obtained using such a single-level strategy are presented in Part I of this work [A. Bespalov, D. Silvester, and F. Xu, SIAM J. Sci. Comput., 44 (2022), pp. A3393-A3412]. Results obtained using a potentially more efficient multilevel approximation strategy, where meshes are individually tailored, are discussed herein. The results demonstrate that the optimal convergence rates can be achieved, but only when solving specific types of problems. The codes used to generate the numerical results are available on GitHub.
引用
收藏
页码:A781 / A797
页数:17
相关论文
共 18 条
  • [1] A stochastic collocation method for elliptic partial differential equations with random input data
    Babuska, Ivo
    Nobile, Fabio
    Tempone, Raul
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (03) : 1005 - 1034
  • [2] ERROR ESTIMATION AND ADAPTIVITY FOR STOCHASTIC COLLOCATION FINITE ELEMENTS PART I: SINGLE-LEVEL APPROXIMATION
    Bespalov, Alex
    Silvester, David J.
    Xu, Feng
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2022, 44 (05) : A3393 - A3412
  • [3] Convergence and rate optimality of adaptive multilevel stochastic Galerkin FEM
    Bespalov, Alex
    Praetorius, Dirk
    Ruggeri, Michele
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2022, 42 (03) : 2190 - 2213
  • [4] Two-Level a Posteriori Error Estimation for Adaptive Multilevel Stochastic Galerkin Finite Element Method
    Bespalov, Alex
    Praetorius, Dirk
    Ruggeri, Michele
    [J]. SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2021, 9 (03): : 1184 - 1216
  • [5] EFFICIENT ADAPTIVE STOCHASTIC GALERKIN METHODS FOR PARAMETRIC OPERATOR EQUATIONS
    Bespalov, Alex
    Silvester, David
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (04) : A2118 - A2140
  • [6] A SPARSE COMPOSITE COLLOCATION FINITE ELEMENT METHOD FOR ELLIPTIC SPDEs
    Bieri, Marcel
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (06) : 2277 - 2301
  • [7] Convergence Rates of Best N-term Galerkin Approximations for a Class of Elliptic sPDEs
    Cohen, Albert
    DeVore, Ronald
    Schwab, Christoph
    [J]. FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2010, 10 (06) : 615 - 646
  • [8] EFFICIENT ADAPTIVE MULTILEVEL STOCHASTIC GALERKIN APPROXIMATION USING IMPLICIT A POSTERIORI ERROR ESTIMATION
    Crowder, Adam J.
    Powell, Catherine E.
    Bespalov, Alex
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (03) : A1681 - A1705
  • [9] ON THE CONVERGENCE OF ADAPTIVE STOCHASTIC COLLOCATION FOR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS WITH AFFINE DIFFUSION
    EIGEL, M. A. R. T. I. N.
    ERNST, O. L. I. V. E. R. G.
    SPRUNGK, B. J. O. R. N.
    TAMELLINI, L. O. R. E. N. Z. O.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2022, 60 (02) : 659 - 687
  • [10] Adaptive stochastic Galerkin FEM
    Eigel, Martin
    Gittelson, Claude Jeffrey
    Schwab, Christoph
    Zander, Elmar
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2014, 270 : 247 - 269