Existence and multiplicity results for a critical superlinear fractional Ambrosetti-Prodi type problem

被引:3
作者
Fu, Peiyuan [1 ]
Xia, Aliang [1 ]
机构
[1] Jiangxi Normal Univ, Sch Math & Stat, Nanchang 330022, Jiangxi, Peoples R China
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2023年 / 120卷
关键词
Fractional Laplacian; Variational methods; Multiplicity results; EQUATION; SYSTEMS;
D O I
10.1016/j.cnsns.2023.107174
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the following class of non-local superlinear parametric problem { (- increment )su = A.u + u2*+ + f (x), in S2, s-1 u=0, in RN \ S2, where 0 < s < 1, S2 is a bounded domain in RN with N > 2s and 2*s = 2N/(N - 2s) is the fractional critical Sobolev exponent, u+(x) := max{u(x), 0} and A. > 0 is a parameter. When A. is not an eigenvalue of (- increment )s and N > 6s, we apply variational methods (especially Linking Theorem) to show that the above problem has at least two non-trivial solutions. We also discuss the existence results of resonant problem (that is, A. = A.1,s with A.1,s is the principal eigenvalue of (- increment )s) via Ekeland variational principle. (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Existence and multiplicity results for a semilinear elliptic problem
    Castro, Alfonso
    Cossio, Jorge
    Herron, Sigifredo
    Velez, Carlos
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 475 (02) : 1493 - 1501
  • [32] Existence and multiplicity results for the fractional Laplacian in bounded domains
    Mugnai, Dimitri
    Pagliardini, Dayana
    ADVANCES IN CALCULUS OF VARIATIONS, 2017, 10 (02) : 111 - 124
  • [33] Existence of solutions for a critical fractional Kirchhoff type problem in(49) RN
    XIANG MingQi
    ZHANG BinLin
    QIU Hong
    ScienceChina(Mathematics), 2017, 60 (09) : 1647 - 1660
  • [34] The existence and multiplicity of solutions of a fractional Schrodinger-Poisson system with critical growth
    Yu, Yuanyang
    Zhao, Fukun
    Zhao, Leiga
    SCIENCE CHINA-MATHEMATICS, 2018, 61 (06) : 1039 - 1062
  • [35] Existence and multiplicity of positive solutions for the fractional Laplacian under subcritical or critical growth
    Frassu, Silvia
    Iannizzotto, Antonio
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2021, 66 (10) : 1642 - 1663
  • [36] Existence results for a critical fractional equation
    Hajaiej, Hichem
    Bisci, Giovanni Molica
    Vilasi, Luca
    ASYMPTOTIC ANALYSIS, 2016, 100 (3-4) : 209 - 225
  • [37] EXISTENCE AND SYMMETRY RESULTS FOR A SCHRODINGER TYPE PROBLEM INVOLVING THE FRACTIONAL LAPLACIAN
    Dipierro, S.
    Palatucci, G.
    Valdinoci, E.
    MATEMATICHE, 2013, 68 (01): : 201 - 216
  • [38] EXISTENCE AND MULTIPLICITY RESULTS FOR RESONANT FRACTIONAL BOUNDARY VALUE PROBLEMS
    Iannizzotto, Antonio
    Papageorgiou, Nikolaos S.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2018, 11 (03): : 511 - 532
  • [39] Existence and multiplicity results of homoclinic solutions for fractional Hamiltonian systems
    Zhou, Yong
    Zhang, Lu
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 73 (06) : 1325 - 1345
  • [40] EXISTENCE AND MULTIPLICITY RESULTS FOR A MIXED STURM-LIOUVILLE TYPE BOUNDARY VALUE PROBLEM
    Hadjian, Armin
    Shakeri, Saleh
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2016, 78 (02): : 49 - 66