Existence and multiplicity results for a critical superlinear fractional Ambrosetti-Prodi type problem

被引:3
|
作者
Fu, Peiyuan [1 ]
Xia, Aliang [1 ]
机构
[1] Jiangxi Normal Univ, Sch Math & Stat, Nanchang 330022, Jiangxi, Peoples R China
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2023年 / 120卷
关键词
Fractional Laplacian; Variational methods; Multiplicity results; EQUATION; SYSTEMS;
D O I
10.1016/j.cnsns.2023.107174
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the following class of non-local superlinear parametric problem { (- increment )su = A.u + u2*+ + f (x), in S2, s-1 u=0, in RN \ S2, where 0 < s < 1, S2 is a bounded domain in RN with N > 2s and 2*s = 2N/(N - 2s) is the fractional critical Sobolev exponent, u+(x) := max{u(x), 0} and A. > 0 is a parameter. When A. is not an eigenvalue of (- increment )s and N > 6s, we apply variational methods (especially Linking Theorem) to show that the above problem has at least two non-trivial solutions. We also discuss the existence results of resonant problem (that is, A. = A.1,s with A.1,s is the principal eigenvalue of (- increment )s) via Ekeland variational principle. (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Existence results for Kirchhoff-type superlinear problems involving the fractional Laplacian
    Zhang Binlin
    Radulescu, Vicentiu D.
    Wang, Li
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2019, 149 (04) : 1061 - 1081
  • [22] Existence and multiplicity of solutions for Dirichlet problem of p(x)-Laplacian type without the Ambrosetti-Rabinowitz condition
    Chen, Sitong
    Tang, Xianhua
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 501 (01)
  • [23] On a fractional Nirenberg problem on n-dimensional spheres: Existence and multiplicity results
    Chtioui, Hichem
    Abdelhedi, Wael
    BULLETIN DES SCIENCES MATHEMATIQUES, 2016, 140 (06): : 617 - 628
  • [24] Existence results for the fractional Nirenberg problem
    Chen, Yan-Hong
    Liu, Chungen
    Zheng, Youquan
    JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 270 (11) : 4043 - 4086
  • [25] Ambrosetti-Prodi-type results for a class of difference equations with nonlinearities indefinite in sign
    Zhao, Jiao
    Ma, Ruyun
    OPEN MATHEMATICS, 2022, 20 (01): : 783 - 790
  • [26] A critical point approach to multiplicity results for a fractional boundary value problem
    Dhar, Sougata
    Kong, Lingju
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (05) : 3617 - 3633
  • [27] A critical point approach to multiplicity results for a fractional boundary value problem
    Sougata Dhar
    Lingju Kong
    Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43 : 3617 - 3633
  • [28] Existence of solutions for a critical fractional Kirchhoff type problem in RN
    Xiang, MingQi
    Zhang, BinLin
    Qiu, Hong
    SCIENCE CHINA-MATHEMATICS, 2017, 60 (09) : 1647 - 1660
  • [29] Existence of solutions for a critical fractional Kirchhoff type problem in ℝN
    MingQi Xiang
    BinLin Zhang
    Hong Qiu
    Science China Mathematics, 2017, 60 : 1647 - 1660
  • [30] Existence and multiplicity results for the fractional Laplacian in bounded domains
    Mugnai, Dimitri
    Pagliardini, Dayana
    ADVANCES IN CALCULUS OF VARIATIONS, 2017, 10 (02) : 111 - 124