Existence and multiplicity results for a critical superlinear fractional Ambrosetti-Prodi type problem

被引:3
|
作者
Fu, Peiyuan [1 ]
Xia, Aliang [1 ]
机构
[1] Jiangxi Normal Univ, Sch Math & Stat, Nanchang 330022, Jiangxi, Peoples R China
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2023年 / 120卷
关键词
Fractional Laplacian; Variational methods; Multiplicity results; EQUATION; SYSTEMS;
D O I
10.1016/j.cnsns.2023.107174
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the following class of non-local superlinear parametric problem { (- increment )su = A.u + u2*+ + f (x), in S2, s-1 u=0, in RN \ S2, where 0 < s < 1, S2 is a bounded domain in RN with N > 2s and 2*s = 2N/(N - 2s) is the fractional critical Sobolev exponent, u+(x) := max{u(x), 0} and A. > 0 is a parameter. When A. is not an eigenvalue of (- increment )s and N > 6s, we apply variational methods (especially Linking Theorem) to show that the above problem has at least two non-trivial solutions. We also discuss the existence results of resonant problem (that is, A. = A.1,s with A.1,s is the principal eigenvalue of (- increment )s) via Ekeland variational principle. (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] The critical fractional Ambrosetti-Prodi problem
    Ambrosio, Vincenzo
    Isernia, Teresa
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2022, 71 (03) : 1107 - 1132
  • [2] A fractional Ambrosetti-Prodi type problem in RN
    de Lima, Romildo N.
    Torres Ledesma, Cesar E.
    Nobrega, Alannio B.
    JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2023, 9 (01) : 355 - 387
  • [3] The critical fractional Ambrosetti–Prodi problem
    Vincenzo Ambrosio
    Teresa Isernia
    Rendiconti del Circolo Matematico di Palermo Series 2, 2022, 71 : 1107 - 1132
  • [4] An Ambrosetti-Prodi type result for fractional spectral problems
    Ambrosio, Vincenzo
    MATHEMATISCHE NACHRICHTEN, 2020, 293 (03) : 412 - 429
  • [5] On a singular periodic Ambrosetti-Prodi problem
    Fonda, Alessandro
    Sfecci, Andrea
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 149 : 146 - 155
  • [6] Critical Concave Convex Ambrosetti-Prodi Type Problems for Fractional p-Laplacian
    Bueno, H. P.
    Huerto Caqui, E.
    Miyagaki, O. H.
    Pereira, F. R.
    ADVANCED NONLINEAR STUDIES, 2020, 20 (04) : 847 - 865
  • [7] On critical Ambrosetti-Prodi type problems involving mixed operator
    Sharma, Lovelesh
    Mukherjee, Tuhina
    JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2024, 10 (02) : 1187 - 1216
  • [8] Ambrosetti-Prodi Type Results for Dirichlet Problems of Fractional Laplacian-Like Operators
    Biswas, Anup
    Lorinczi, Jozsef
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2020, 92 (03)
  • [10] THE AMBROSETTI-PRODI PERIODIC PROBLEM: DIFFERENT ROUTES TO COMPLEX DYNAMICS
    Sovrano, Elisa
    Zanolin, Fabio
    DYNAMIC SYSTEMS AND APPLICATIONS, 2017, 26 (3-4): : 589 - 626