A Dual-Attention-Mechanism Multi-Channel Convolutional LSTM for Short-Term Wind Speed Prediction

被引:6
|
作者
He, Jinhui [1 ]
Yang, Hao [1 ,2 ]
Zhou, Shijie [2 ]
Chen, Jing [3 ]
Chen, Min [1 ]
机构
[1] Chengdu Univ Informat Technol, Dept Comp Sci, Chengdu 610225, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Informat & Software Engn, Chengdu 611731, Peoples R China
[3] CMA, Earth Syst Modeling & Predict Ctr CEMC, Beijing 100081, Peoples R China
基金
国家重点研发计划;
关键词
machine learning; weather forecasting and nowcasting; short-term wind forecasting; MODEL;
D O I
10.3390/atmos14010071
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Accurate wind speed prediction plays a crucial role in wind power generation and disaster avoidance. However, stochasticity and instability increase the difficulty of wind speed prediction. In this study, we proposed a dual-attention mechanism multi-channel convolutional LSTM (DACLSTM), collected European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis v5 (ERA5) near-ground element-grid data from some parts of North China, and selected elements with high correlations with wind speed to form multiple channels. We used a convolutional network for the feature extraction of spatial information, a Long Short-Term Memory (LSTM) network for the feature extraction of time-series information, and used channel attention with spatial attention for feature extraction. The experimental results show that the DACLSTM model can improve the accuracy of six-hour lead time wind speed prediction relative to the traditional ConvLSTM model and fully connected network long short-term memory (FC_LSTM).
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Short-Term Canyon Wind Speed Prediction Based on CNN-GRU Transfer Learning
    Ji, Lipeng
    Fu, Chenqi
    Ju, Zheng
    Shi, Yicheng
    Wu, Shun
    Tao, Li
    ATMOSPHERE, 2022, 13 (05)
  • [42] Learning traffic as videos: Short-term traffic flow prediction using mixed-pointwise convolution and channel attention mechanism
    Feng, Ruijun
    Chen, Mingzhou
    Song, Yaqi
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 240
  • [43] Two Machine Learning Approaches for Short-Term Wind Speed Time-Series Prediction
    Ak, Ronay
    Fink, Olga
    Zio, Enrico
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2016, 27 (08) : 1734 - 1747
  • [44] Short-Term Wind Speed Forecasting Based on Data Preprocessing and Improved Hybrid Prediction Network
    Chen, Gonggui
    Li, Lijun
    Qin, Feng
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 734 - 738
  • [45] Power prediction considering NWP wind speed error tolerability: A strategy to improve the accuracy of short-term wind power prediction under wind speed offset scenarios
    Yang, Mao
    Guo, Yunfeng
    Huang, Tao
    Zhang, Wei
    APPLIED ENERGY, 2025, 377
  • [46] Short-term wind speed prediction using empirical wavelet transform and Gaussian process regression
    Hu, Jianming
    Wang, Jianzhou
    ENERGY, 2015, 93 : 1456 - 1466
  • [47] Short-Term Traffic Speed Prediction of Urban Road With Multi-Source Data
    Yang, Xun
    Yuan, Yu
    Liu, Zhiyuan
    IEEE ACCESS, 2020, 8 : 87541 - 87551
  • [48] HCNN-LSTM: Hybrid Convolutional Neural Network with Long Short-Term Memory Integrated for Legitimate Web Prediction
    Zonyfar, Candra
    Lee, Jung-Been
    Kim, Jeong-Dong
    JOURNAL OF WEB ENGINEERING, 2023, 22 (05): : 757 - 782
  • [49] Short-term power load forecasting for combined heat and power using CNN-LSTM enhanced by attention mechanism
    Wan, Anping
    Chang, Qing
    AL-Bukhaiti, Khalil
    He, Jiabo
    ENERGY, 2023, 282
  • [50] Analysis of short-term wind speed variation, trends and prediction: A case study of Tamil Nadu, India
    Navas, Raja Mohamed Kaja Bantha
    Prakash, Subramaniam
    Molnar, Viktor
    JOURNAL OF INTELLIGENT SYSTEMS, 2024, 33 (01)