Reaction pathways for the highly selective and durable electrochemical CO2 to CO conversion on ZnO supported Ag nanoparticles in KCl electrolyte

被引:14
作者
Bhalothia, Dinesh [1 ]
Lee, Da-Wei [2 ]
Jhao, Guan-Ping [2 ]
Liu, Hsiao-Yun [2 ]
Jia, Yanyan [3 ,4 ]
Dai, Sheng [3 ,4 ]
Wang, Kuan-Wen [1 ,2 ]
Chen, Tsan-Yao [1 ,5 ]
机构
[1] Natl Tsing Hua Univ, Dept Engn & Syst Sci, Hsinchu 30013, Taiwan
[2] Natl Cent Univ, Inst Mat Sci & Engn, Taoyuan 32001, Taiwan
[3] East China Univ Sci & Technol, Key Lab Adv Mat, Shanghai 200237, Peoples R China
[4] East China Univ Sci & Technol, Feringa Nobel Prize Scientist Joint Res Ctr, Sch Chem & Mol Engn, Shanghai 200237, Peoples R China
[5] Natl Cheng Kung Univ, Hierarch Green Energy Mat Hi GEM Res Ctr, Tainan 70101, Taiwan
关键词
ZnO; Ag; Nanocatalysts; Electrochemical CO2 reduction (ECR); Faradaic efficiency (FE); CARBON-DIOXIDE; COPPER ELECTRODE; FORMIC-ACID; REDUCTION; ELECTROREDUCTION; PERFORMANCE; CATALYSIS;
D O I
10.1016/j.apsusc.2022.155224
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electrochemical CO2 reduction (ECR) is a promising approach for recycling atmospheric CO2 into value-added fuels. However, due to the sluggish ECR, highly effective ctalysts are needed. ZnO supported Ag nanocatalyst (NC) ((ZnO)(3)@Ag) is developed for CO2 to CO conversion where the faradaic efficiency (FE) was similar to 95% in 0.5 M KCl at 1.1 V, and that progressively decreased in 0.1 M KCl (89.7%) and 0.1 M KHCO3 (84.6%). Besides, (ZnO)(3)@Ag NC exhibited unprecedented stability in 0.5 M KCl with only 6.3% decay after 8 h while 14% and 14.3% decay were observed in 0.1 M KCl and 0.1 M KHCO3, respectively. The cross-referencing results of materials analyses and in-situ X-ray absorption spectroscopy suggest that the high CO selectivity of (ZnO)(3)@Ag NC in KCl originates from the synergistic collaboration between ZnO and Ag, where, ZnO supplies electrons to Ag for adsorption/structural rearrangement of CO2 molecule and subsequent desorption of CO. On the other hand, the presence of CO32- ions in KHCO3 hinder the mass transportation (i.e. the adsorption) of CO2, resulting in the decrease in selectivity and stability. Hereby, this study will spark motivation for designing the highly selective and stable ECR catalysts and uncover the mechanistic aspects of ECR.
引用
收藏
页数:11
相关论文
共 54 条
[1]   Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels [J].
Benson, Eric E. ;
Kubiak, Clifford P. ;
Sathrum, Aaron J. ;
Smieja, Jonathan M. .
CHEMICAL SOCIETY REVIEWS, 2009, 38 (01) :89-99
[2]   Submillisecond Laser Annealing Induced Surface and Subsurface Restructuring of Cu-Ni-Pd Trimetallic Nanocatalyst Promotes Thermal CO2 Reduction [J].
Bhalothia, Dinesh ;
Hsiung, Wei-Hao ;
Yang, Shou-Shiun ;
Yan, Che ;
Chen, Pei-Chi ;
Lin, Ting-Han ;
Wu, Shun-Chi ;
Chen, Po-Chun ;
Wang, Kuan-Wen ;
Lin, Ming-Wei ;
Chen, Tsan-Yao .
ACS APPLIED ENERGY MATERIALS, 2021, 4 (12) :14043-14058
[3]   NiOx-supported PtRh nanoalloy enables high-performance hydrogen evolution reaction under universal pH conditions [J].
Bhalothia, Dinesh ;
Yu, Yu-Min ;
Lin, Yi-Ru ;
Huang, Tzu-Hsi ;
Yan, Che ;
Lee, Jyh-Fu ;
Wang, Kuan-Wen ;
Chen, Tsan-Yao .
SUSTAINABLE ENERGY & FUELS, 2021, 5 (21) :5490-5504
[4]   Promoting formic acid oxidation performance of Pd nanoparticles via Pt and Ru atom mediated surface engineering [J].
Bhalothia, Dinesh ;
Huang, Tzu-Hsi ;
Chou, Pai-Hung ;
Wang, Kuan-Wen ;
Chen, Tsan-Yao .
RSC ADVANCES, 2020, 10 (29) :17302-17310
[5]   Stable single atomic silver wires assembling into a circuitry-connectable nanoarray [J].
Chen, Yaxin ;
Tang, Daiming ;
Huang, Zhiwei ;
Liu, Xi ;
Chen, Jun ;
Sekiguchi, Takashi ;
Qu, Weiye ;
Chen, Junxiao ;
Xu, Dongrun ;
Bando, Yoshio ;
Hu, Xiaolei ;
Wang, Xiaoping ;
Golberg, Dmitri ;
Tang, Xingfu .
NATURE COMMUNICATIONS, 2021, 12 (01)
[6]   Understanding Selectivity for the Electrochemical Reduction of Carbon Dioxide to Formic Acid and Carbon Monoxide on Metal Electrodes [J].
Feaster, Jeremy T. ;
Shi, Chuan ;
Cave, Etosha R. ;
Hatsukade, Tom T. ;
Abram, David N. ;
Kuhl, Kendra P. ;
Hahn, Christopher ;
Norskov, Jens K. ;
Jaramillo, Thomas F. .
ACS CATALYSIS, 2017, 7 (07) :4822-4827
[7]   Nitrogen-doped metal-free carbon catalysts for (electro)chemical CO2 conversion and valorisation [J].
Fernandes, Diana M. ;
Peixoto, Andreia F. ;
Freire, Cristina .
DALTON TRANSACTIONS, 2019, 48 (36) :13508-13528
[8]   Electrochemical conversion of carbon dioxide into renewable fuel chemicals - The role of nanomaterials and the commercialization [J].
Ganesh, Ibram .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2016, 59 :1269-1297
[9]   Advances and challenges in electrochemical CO2 reduction processes: an engineering and design perspective looking beyond new catalyst materials [J].
Garg, Sahil ;
Li, Mengran ;
Weber, Adam Z. ;
Ge, Lei ;
Li, Liye ;
Rudolph, Victor ;
Wang, Guoxiong ;
Rufford, Thomas E. .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (04) :1511-1544
[10]   THE CHEMISTRY AND CATALYSIS OF THE WATER GAS SHIFT REACTION .1. THE KINETICS OVER SUPPORTED METAL-CATALYSTS [J].
GRENOBLE, DC ;
ESTADT, MM ;
OLLIS, DF .
JOURNAL OF CATALYSIS, 1981, 67 (01) :90-102