Longtime Dynamics of a Semilinear Lame System

被引:18
作者
Bocanegra-Rodriguez, Lito Edinson [1 ]
Silva, Marcio Antonio Jorge [2 ]
Ma, To Fu [3 ]
Seminario-Huertas, Paulo Nicanor [3 ,4 ]
机构
[1] Univ Sao Paulo, Inst Math & Comp Sci, BR-13566560 Sao Carlos, SP, Brazil
[2] Univ Estadual Londrina, Dept Math, BR-86057970 Londrina, PR, Brazil
[3] Univ Brasilia, Dept Math, BR-70910900 Brasilia, DF, Brazil
[4] Natl Univ Callao, Acad Dept Math, Bellavista 07011, Callao, Peru
基金
巴西圣保罗研究基金会;
关键词
System of elasticity; Global attractor; Gradient system; Upper-semicontinuity; ASYMPTOTIC STABILITY; UPPER SEMICONTINUITY; WAVE-EQUATIONS; STABILIZATION; ATTRACTORS;
D O I
10.1007/s10884-021-09955-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with longtime dynamics of semilinear Lame systems partial derivative(2)(t)u - mu Delta u-(lambda+mu) del div u + alpha partial derivative(t)u + f(u) = b. defined in bounded domains of R-3 with Dirichlet boundary condition. Firstly, we establish the existence of finite dimensional global attractors subjected to a critical forcing f(u). Writing lambda+mu as a positive parameter epsilon, we discuss some physical aspects of the limit case epsilon -> 0. Then, we show the upper-semicontinuity of attractors with respect to the parameter when epsilon -> 0. To our best knowledge, the analysis of attractors for dynamics of Lame systems has not been studied before.
引用
收藏
页码:1435 / 1456
页数:22
相关论文
共 33 条
[1]  
Achenbach J. D., 1973, WAVE PROPAGATION ELA
[2]   Boundary observability, controllability, and stabilization of linear elastodynamic systems [J].
Alabau, F ;
Komornik, V .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1999, 37 (02) :521-542
[3]  
[Anonymous], 1829, Mm. Acad. R. Sci. Inst. Fr
[4]  
[Anonymous], 2001, Seismic Ray Theory, DOI DOI 10.1017/CBO9780511529399
[5]   A DAMPED HYPERBOLIC EQUATION WITH CRITICAL EXPONENT [J].
ARRIETA, J ;
CARVALHO, AN ;
HALE, JK .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1992, 17 (5-6) :841-866
[6]  
Astaburuaga MA., 2002, Differ. Integral Equ, V15, P1357
[7]   WELL-POSEDNESS AND ASYMPTOTIC STABILITY FOR THE LAME SYSTEM WITH INFINITE MEMORIES IN A BOUNDED DOMAIN [J].
Bchatnia, Ahmed ;
Guesmia, Aissa .
MATHEMATICAL CONTROL AND RELATED FIELDS, 2014, 4 (04) :451-463
[8]   The dynamical Lame system: Regularity of solutions, boundary controllability and boundary data continuation [J].
Belishev, MI ;
Lasiecka, I .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2002, 8 :143-167
[9]   Asymptotic stability for the Lame system with fractional boundary damping [J].
Benaissa, Abbes ;
Gaouar, Soumia .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 77 (05) :1331-1346
[10]   Attractors for wave equations with degenerate memory [J].
Cavalcanti, M. M. ;
Fatori, L. H. ;
Ma, T. F. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (01) :56-83