Uniqueness theorem for negative solutions of fully nonlinear elliptic equations in a ball

被引:3
作者
Gao, Zhenghuan [1 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金;
关键词
Uniqueness; Radial solution; (mk)-Hessian equation; POSITIVE RADIAL SOLUTIONS; NONNEGATIVE SOLUTIONS; SEMILINEAR EQUATIONS; GROUND-STATES; EXISTENCE;
D O I
10.1016/j.na.2024.113495
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove the uniqueness of negative radial solution to a Dirichlet problem of (m,k)-Hessian equation in a finite ball of Ill R-n for 1< k <(n)(m). Our proof is based on a Pohozaev identity and the monotone separation techniques.
引用
收藏
页数:13
相关论文
共 46 条
[1]   Uniqueness of positive solutions of a quasilinear Dirichlet problem with exponential nonlinearity [J].
Adimurthi .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1998, 128 :895-906
[2]   AN ELEMENTARY PROOF OF THE UNIQUENESS OF POSITIVE RADIAL SOLUTIONS OF A QUASI-LINEAR DIRICHLET PROBLEM [J].
ADIMURTHI ;
YADAVA, SL .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1994, 127 (03) :219-229
[3]  
ATKINSON FV, 1986, ARCH RATION MECH AN, V96, P147, DOI 10.1007/BF00251409
[4]   Necessary and sufficient conditions on global solvability for the p-k-Hessian inequalities [J].
Bao, Jiguang ;
Feng, Qiaoli .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2022, :1004-1019
[5]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[6]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[7]   THE DIRICHLET PROBLEM FOR NONLINEAR 2ND-ORDER ELLIPTIC-EQUATIONS .3. FUNCTIONS OF THE EIGENVALUES OF THE HESSIAN [J].
CAFFARELLI, L ;
NIRENBERG, L ;
SPRUCK, J .
ACTA MATHEMATICA, 1985, 155 (3-4) :261-301
[8]   Critical dimension of a Hessian equation involving critical exponent and a related asymptotic result [J].
Chou, KS ;
Geng, D ;
Yan, SS .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 129 (01) :79-110
[9]   A variational theory of the Hessian equation [J].
Chou, KS ;
Wang, XJ .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2001, 54 (09) :1029-1064
[10]  
Citti Giovanna, 1987, Rend. Circ. Mat. Palermo., V35, P364