Accelerating Markov Chain Monte Carlo sampling with diffusion models ☆

被引:11
作者
Hunt-Smith, N. T. [1 ,2 ]
Melnitchouk, W. [3 ]
Ringer, F. [3 ,4 ]
Sato, N. [3 ]
Thomas, A. W. [1 ,2 ]
White, M. J. [1 ,2 ]
机构
[1] Univ Adelaide, CSSM, North Terrace, SA 5005, Australia
[2] Univ Adelaide, ARC Ctr Excellence Dark Matter Particle Phys, North Terrace, SA 5005, Australia
[3] Jefferson Lab, Newport News, VA 23606 USA
[4] Old Dominion Univ, Dept Phys, Norfolk, VA 23529 USA
关键词
Markov Chain Monte Carlo; Diffusion model; Machine learning; Statistical methods;
D O I
10.1016/j.cpc.2023.109059
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Global fits of physics models require efficient methods for exploring high-dimensional and/or multimodal posterior functions. We introduce a novel method for accelerating Markov Chain Monte Carlo (MCMC) sampling by pairing a Metropolis-Hastings algorithm with a diffusion model that can draw global samples with the aim of approximating the posterior. We briefly review diffusion models in the context of image synthesis before providing a streamlined diffusion model tailored towards low-dimensional data arrays. We then present our adapted Metropolis-Hastings algorithm which combines local proposals with global proposals taken from a diffusion model that is regularly trained on the samples produced during the MCMC run. Our approach leads to a significant reduction in the number of likelihood evaluations required to obtain an accurate representation of the Bayesian posterior across several analytic functions, as well as for a physical example based on a global analysis of parton distribution functions. Our method is extensible to other MCMC techniques, and we briefly compare our method to similar approaches based on normalizing flows. A code implementation can be found at https://github .com /NickHunt-Smith /MCMC -diffusion.
引用
收藏
页数:9
相关论文
共 33 条
[1]   Flow-based generative models for Markov chain Monte Carlo in lattice field theory [J].
Albergo, M. S. ;
Kanwar, G. ;
Shanahan, P. E. .
PHYSICAL REVIEW D, 2019, 100 (03)
[2]  
Albergo MS, 2021, Arxiv, DOI arXiv:2101.08176
[3]   Sampling using a 'bank' of clues [J].
Allanach, Benjamin C. ;
Lester, Christopher G. .
COMPUTER PHYSICS COMMUNICATIONS, 2008, 179 (04) :256-266
[4]   Collider constraints on electroweakinos in the presence of a light gravitino [J].
Ananyev, Viktor ;
Balazs, Csaba ;
Beniwal, Ankit ;
Braseth, Lasse Lorentz ;
Buckley, Andy ;
Butterworth, Jonathan ;
Chang, Christopher ;
Danninger, Matthias ;
Fowlie, Andrew ;
Gonzalo, Tomas E. ;
Kvellestad, Anders ;
Mahmoudi, Farvah ;
Martinez, Gregory D. ;
Prim, Markus T. ;
Procter, Tomasz ;
Raklev, Are ;
Scott, Pat ;
Stoecker, Patrick ;
Van den Abeele, Jeriek ;
White, Martin ;
Zhang, Yang .
EUROPEAN PHYSICAL JOURNAL C, 2023, 83 (06)
[5]   A tutorial on adaptive MCMC [J].
Andrieu, Christophe ;
Thoms, Johannes .
STATISTICS AND COMPUTING, 2008, 18 (04) :343-373
[6]   Cosmological constraints on decaying axion-like particles: a global analysis [J].
Balazs, Csaba ;
Bloor, Sanjay ;
Gonzalo, Tomas E. ;
Handley, Will ;
Hoof, Sebastian ;
Kahlhoefer, Felix ;
Lecroq, Marie ;
Marsh, David J. E. ;
Renk, Janina J. ;
Scott, Pat ;
Stoecker, Patrick .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2022, (12)
[7]   A comparison of optimisation algorithms for high-dimensional particle and astrophysics applications [J].
Balazs, Csaba ;
van Beekveld, Melissa ;
Caron, Sascha ;
Dillon, Barry M. ;
Farmer, Ben ;
Fowlie, Andrew ;
Garrido-Merchan, Eduardo C. ;
Handley, Will ;
Hendriks, Luc ;
Johannesson, Gudlaugur ;
Leinweber, Adam ;
Mamuzic, Judita ;
Martinez, Gregory D. ;
Otten, Sydney ;
de Austri, Roberto Ruiz ;
Scott, Pat ;
Searle, Zachary ;
Stienen, Bob ;
Vanschoren, Joaquin ;
White, Martin .
JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (05)
[8]   Sampling using SU(N) gauge equivariant flows [J].
Boyda, Denis ;
Kanwar, Gurtej ;
Racaniere, Sebastien ;
Rezende, Danilo Jimenez ;
Albergo, Michael S. ;
Cranmer, Kyle ;
Hackett, Daniel C. ;
Shanahan, Phiala E. .
PHYSICAL REVIEW D, 2021, 103 (07)
[9]  
Chang CSP, 2023, Arxiv, DOI arXiv:2303.08351
[10]  
Cornish R, 2021, Arxiv, DOI arXiv:1909.13833