Ammonia synthesis via chromium-based nitrogen carrier looping

被引:6
作者
Sun, Zhao [1 ]
Li, Ke [1 ]
Toan, Sam [2 ]
Zhang, Rongjun [3 ]
Li, Hongwei [3 ]
Wu, Yu [3 ]
Sun, Zhiqiang [1 ]
机构
[1] Cent South Univ, Sch Energy Sci & Engn, Changsha 410083, Peoples R China
[2] Univ Minnesota, Dept Chem Engn, Duluth, MN 55812 USA
[3] SINOPEC, Res Inst Petr Proc, State Key Lab Catalyt Mat & React Engn, Beijing 100083, Peoples R China
关键词
Carbothermal reduction; Chemical looping; Ammonia synthesis; Lattice nitrogen; Chromium-based nitrogen carrier; THERMOCHEMICAL SYNTHESIS; CATALYSTS; HYDROGEN; CARBON; OXIDE; NH3;
D O I
10.1016/j.cej.2023.146643
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Redox nitrogen fixation-nitride hydrolysis looping provides a promising pathway for ammonia synthesis; how -ever, high N fixation temperature and low N-lattice(3-) supplement efficiency limit its further development and application. In this regard, a two-step chemical looping ammonia synthesis route, chromium-based nitrogen carrier enabled low-temperature N fixation and nitrogen carrier hydrolysis, is proposed to intensify ammonia generation. In the N fixation step, the effects of carbon species on the carbothermal reduction performance are investigated. Results reveal that decreasing the graphitization degree of the carbon species can effectively reduce the nitrogen activation temperature from 1054 degrees C to 948 degrees C. Meanwhile, the C/Cr2O3 ratio required is correlated with the amount of oxygen in carbon species, and the appropriate active carbon/biochar-to-Cr ratios are 4.00 and 3.25, respectively. In the ammonia synthesis step, the nitrogen carrier hydrolysis rate is mainly limited by the diffusion of reactive species. The ammonia formation rate reaches 0.127 mmol center dot h(-1)center dot g(-1) nitrogen carrier at 1100 degrees C. XRD retrieve refinement results reveal that the utilization of the lattice nitrogen decreases with the increase in the ammonia releasing temperature. This study provides new implications for advanced nitrogen carrier exploitation, which will substantially promote the development of chemical looping ammonia synthesis technologies with lowered energy consumption.
引用
收藏
页数:10
相关论文
共 46 条
  • [1] X-RAY PHOTOELECTRON-AUGER ELECTRON SPECTROSCOPIC STUDY OF INITIAL OXIDATION OF CHROMIUM METAL
    ALLEN, GC
    TUCKER, PM
    WILD, RK
    [J]. JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS II, 1978, 74 : 1126 - 1140
  • [2] Raman spectroscopic characterization of multiwall carbon nanotubes and of composites
    Bokobza, L.
    Zhang, J.
    [J]. EXPRESS POLYMER LETTERS, 2012, 6 (07): : 601 - 608
  • [3] Microwave heated chemical looping ammonia synthesis over Fe and CoMo particles
    Brown, Sean W.
    Robinson, Brandon
    Wang, Yuxin
    Wildfire, Christina
    Hu, Jianli
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (29) : 15497 - 15507
  • [4] Thermodynamic feasibility analysis of distributed chemical looping ammonia synthesis
    Burrows, Laron
    Gao, Pu-Xian
    Bollas, George M.
    [J]. CHEMICAL ENGINEERING JOURNAL, 2021, 426
  • [5] An efficient process for sustainable and scalable hydrogen production from green ammonia
    Cha, Junyoung
    Park, Yongha
    Brigljevic, Boris
    Lee, Boreum
    Lim, Dongjun
    Lee, Taeho
    Jeong, Hyangsoo
    Kim, Yongmin
    Sohn, Hyuntae
    Mikulcic, Hrvoje
    Lee, Kyung Moon
    Nam, Dong Hoon
    Lee, Ki Bong
    Lim, Hankwon
    Yoon, Chang Won
    Jo, Young Suk
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2021, 152 (152)
  • [6] Beyond fossil fuel-driven nitrogen transformations
    Chen, Jingguang G.
    Crooks, Richard M.
    Seefeldt, Lance C.
    Bren, Kara L.
    Bullock, R. Morris
    Darensbourg, Marcetta Y.
    Holland, Patrick L.
    Hoffman, Brian
    Janik, Michael J.
    Jones, Anne K.
    Kanatzidis, Mercouri G.
    King, Paul
    Lancaster, Kyle M.
    Lymar, Sergei V.
    Pfromm, Peter
    Schneider, William F.
    Schrock, Richard R.
    [J]. SCIENCE, 2018, 360 (6391)
  • [7] How a century of ammonia synthesis changed the world
    Erisman, Jan Willem
    Sutton, Mark A.
    Galloway, James
    Klimont, Zbigniew
    Winiwarter, Wilfried
    [J]. NATURE GEOSCIENCE, 2008, 1 (10) : 636 - 639
  • [8] A multi-functional composite nitrogen carrier for ammonia production via a chemical looping route
    Feng, Sheng
    Gao, Wenbo
    Wang, Qianru
    Guan, Yeqin
    Yan, Hanxue
    Wu, Han
    Cao, Hujun
    Guo, Jianping
    Chen, Ping
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (02) : 1039 - 1047
  • [9] Ammonia production via a two-step Al2O3/AlN thermochemical cycle.: 1.: Thermodynamic, environmental, and economic analyses
    Galvez, M. E.
    Halmann, M.
    Steinfeld, A.
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2007, 46 (07) : 2042 - 2046
  • [10] Production of ammonia via a chemical looping process based on metal imides as nitrogen carriers
    Gao, Wenbo
    Guo, Jianping
    Wang, Peikun
    Wang, Qianru
    Chang, Fei
    Pei, Qijun
    Zhang, Weijin
    Liu, Lin
    Chen, Ping
    [J]. NATURE ENERGY, 2018, 3 (12): : 1067 - 1075