State and Parameter Estimation for Retinal Laser Treatment

被引:1
作者
Kleyman, Viktoria [1 ]
Schaller, Manuel [2 ]
Mordmueller, Mario [3 ]
Wilson, Mitsuru [2 ]
Brinkmann, Ralf [3 ]
Worthmann, Karl [2 ]
Mueller, Matthias A. [1 ]
机构
[1] Leibniz Univ Hannover, Inst Automat Control, D-30167 Hannover, Germany
[2] Tech Univ Ilmenau, Inst Math, D-98693 Ilmenau, Germany
[3] Univ Lubeck, Inst Biomed Opt, D-23562 Lubeck, Germany
关键词
Biomedical applications; extended Kalman filtering; moving horizon estimation; state and parameter estimation; MOVING HORIZON ESTIMATION; MODEL-REDUCTION; ARRIVAL COST; FILTER; IDENTIFICATION; ALGORITHM; THERAPY; SYSTEMS;
D O I
10.1109/TCST.2022.3228442
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Adequate therapeutic retinal laser irradiation needs to be adapted to local absorption. This leads to time-consuming treatments as the laser power needs to be successively adjusted to avoid undertreatment and overtreatment caused by too low or too high temperatures. Closed-loop control can overcome this burden by means of temperature measurements. To allow for model predictive control schemes, the current state and the spot-dependent absorption need to be estimated. In this article, we thoroughly compare moving horizon estimator (MHE) and extended Kalman filter (EKF) designs for joint state and parameter estimation. We consider two different scenarios, the estimation of one or two unknown absorption coefficients. For one unknown parameter, both estimators perform very similarly. For two unknown parameters, we found that the MHE benefits from active parameter constraints at the beginning of the estimation, whereas after a settling time, both estimators perform again very similarly as long as the parameters are inside the considered parameter bounds.
引用
收藏
页码:1366 / 1378
页数:13
相关论文
共 38 条
[11]   Real-time temperature determination during retinal photocoagulation on patients [J].
Brinkmann, Ralf ;
Koinzer, Stefan ;
Schlott, Kerstin ;
Ptaszynski, Lars ;
Bever, Marco ;
Baade, Alexander ;
Luft, Susanne ;
Miura, Yoko ;
Roider, Johann ;
Birngruber, Reginald .
JOURNAL OF BIOMEDICAL OPTICS, 2012, 17 (06)
[12]   NONLINEAR MODEL REDUCTION VIA DISCRETE EMPIRICAL INTERPOLATION [J].
Chaturantabut, Saifon ;
Sorensen, Danny C. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (05) :2737-2764
[13]  
Denton, 2011, PROC SPIE, V16, P1
[14]  
Gruene L, 2009, IEEE DECIS CONTR P, P537, DOI 10.1109/CDC.2009.5399922
[15]   H2 MODEL REDUCTION FOR LARGE-SCALE LINEAR DYNAMICAL SYSTEMS [J].
Gugercin, S. ;
Antoulas, A. C. ;
Beattie, C. .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2008, 30 (02) :609-638
[16]   Critical evaluation of extended Kalman filtering and moving-horizon estimation [J].
Haseltine, EL ;
Rawlings, JB .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2005, 44 (08) :2451-2460
[17]   Temperature-controlled laser therapy of the retina via robust adaptive H∞-control [J].
Herzog, Christian Ne Hoffmann ;
Thomsen, Ole ;
Schmarbeck, Benedikt ;
Siebert, Marlin ;
Brinkmann, Ralf .
AT-AUTOMATISIERUNGSTECHNIK, 2018, 66 (12) :1051-1063
[18]  
Hjalmarsson H, 2007, P AMER CONTR CONF, P2325
[19]   Protective effect of a laser-induced sub-lethal temperature rise on RPE cells from oxidative stress [J].
Iwami, Hisashi ;
Pruessner, Joachim ;
Shiraki, Kunihiko ;
Brinkmann, Ralf ;
Miura, Yoko .
EXPERIMENTAL EYE RESEARCH, 2014, 124 :37-47
[20]   Advanced-multi-step Moving Horizon Estimation [J].
Kim, Yeonsoo ;
Lin, Kuan-Han ;
Thierry, David M. ;
Biegler, Lorenz T. .
IFAC PAPERSONLINE, 2021, 54 (03) :269-274