State and Parameter Estimation for Retinal Laser Treatment

被引:1
作者
Kleyman, Viktoria [1 ]
Schaller, Manuel [2 ]
Mordmueller, Mario [3 ]
Wilson, Mitsuru [2 ]
Brinkmann, Ralf [3 ]
Worthmann, Karl [2 ]
Mueller, Matthias A. [1 ]
机构
[1] Leibniz Univ Hannover, Inst Automat Control, D-30167 Hannover, Germany
[2] Tech Univ Ilmenau, Inst Math, D-98693 Ilmenau, Germany
[3] Univ Lubeck, Inst Biomed Opt, D-23562 Lubeck, Germany
关键词
Biomedical applications; extended Kalman filtering; moving horizon estimation; state and parameter estimation; MOVING HORIZON ESTIMATION; MODEL-REDUCTION; ARRIVAL COST; FILTER; IDENTIFICATION; ALGORITHM; THERAPY; SYSTEMS;
D O I
10.1109/TCST.2022.3228442
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Adequate therapeutic retinal laser irradiation needs to be adapted to local absorption. This leads to time-consuming treatments as the laser power needs to be successively adjusted to avoid undertreatment and overtreatment caused by too low or too high temperatures. Closed-loop control can overcome this burden by means of temperature measurements. To allow for model predictive control schemes, the current state and the spot-dependent absorption need to be estimated. In this article, we thoroughly compare moving horizon estimator (MHE) and extended Kalman filter (EKF) designs for joint state and parameter estimation. We consider two different scenarios, the estimation of one or two unknown absorption coefficients. For one unknown parameter, both estimators perform very similarly. For two unknown parameters, we found that the MHE benefits from active parameter constraints at the beginning of the estimation, whereas after a settling time, both estimators perform again very similarly as long as the parameters are inside the considered parameter bounds.
引用
收藏
页码:1366 / 1378
页数:13
相关论文
共 38 条
[1]   Modeling and Temperature Control of Retinal Laser Therapy [J].
Abbas, Hossam S. ;
Kren, Christopher ;
Danicke, Veit ;
Theisen-Kunde, Dirk ;
Brinkmann, Ralf .
IFAC PAPERSONLINE, 2020, 53 (02) :16451-16456
[2]  
Allan Douglas A., 2019, Handbook of Model Predictive Control, P99, DOI [DOI 10.1007/978-3-319-77489-3, 10.1007/978-3-319-77489-3_5]
[3]   CasADi: a software framework for nonlinear optimization and optimal control [J].
Andersson, Joel A. E. ;
Gillis, Joris ;
Horn, Greg ;
Rawlings, James B. ;
Diehl, Moritz .
MATHEMATICAL PROGRAMMING COMPUTATION, 2019, 11 (01) :1-36
[4]  
[Anonymous], 1979, Prentice-Hall Information and System Sciences Series
[5]  
[Anonymous], 2009, Kalman Filtering: With Real-Time Applications, DOI DOI 10.1007/978-3-540-87849-0
[6]   Identification of tissue optical properties during thermal laser-tissue interactions: An ensemble Kalman filter-based approach [J].
Arnold, Andrea ;
Fichera, Loris .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, 2022, 38 (04)
[7]   Power-controlled temperature guided retinal laser therapy [J].
Baade, Alexander ;
von der Burchard, Claus ;
Lawin, Meike ;
Koinzer, Stefan ;
Schmarbeck, Benedikt ;
Schlott, Kerstin ;
Miura, Yoko ;
Roider, Johann ;
Birngruber, Reginald ;
Brinkmann, Ralf .
JOURNAL OF BIOMEDICAL OPTICS, 2017, 22 (11)
[8]   INTERPOLATORY PROJECTION METHODS FOR PARAMETERIZED MODEL REDUCTION [J].
Baur, Ulrike ;
Beattie, Christopher ;
Benner, Peter ;
Gugercin, Serkan .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2011, 33 (05) :2489-2518
[9]   A Survey of Projection-Based Model Reduction Methods for Parametric Dynamical Systems [J].
Benner, Peter ;
Gugercin, Serkan ;
Willcox, Karen .
SIAM REVIEW, 2015, 57 (04) :483-531
[10]  
Brinkmann R, 2022, INVEST OPHTH VIS SCI, V63