Optical waves solutions for the perturbed Fokas-Lenells equation through two different methods

被引:17
作者
Ali, Karmina K. [1 ,2 ]
Yusuf, Abdullahi [4 ,5 ]
Yokus, Asif [3 ]
Ali, Mohamed R. [6 ,7 ]
机构
[1] Univ Zakho, Fac Sci, Dept Math, Zakho, Iraq
[2] Knowledge Univ, Coll Sci, Dept Comp Sci, Erbil 44001, Iraq
[3] Firat Univ, Fac Sci, Dept Math, Elazig, Turkiye
[4] Biruni Univ, Dept Comp Engn, Istanbul, Turkiye
[5] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanon
[6] Benha Univ, Benha Fac Engn, Basic Engn Sci Dept, Banha, Egypt
[7] Future Univ Egypt, Fac Engn & Technol, New Cairo 11835, Egypt
关键词
Optical soliton solutions; The perturbed Fokas-Lenells equation; The Bernoulli sub-equation function method; The(1/G')-expansion method; NONLINEAR SCHRODINGERS EQUATION; PORSEZIAN-DANIEL MODEL; SOLITON PERTURBATION; CONSERVATION-LAWS; KERR LAW;
D O I
10.1016/j.rinp.2023.106869
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This study examines the perturbed Fokas-Lenells equation using two methods: the Bernoulli sub-equation function method and the (1/G ')-expansion method. A traveling wave transformation is used to convert the governing equation into a nonlinear ordinary differential equation. The perturbed Fokas-Lenells equation arises in optical fibers, and the article constructs various optical soliton solutions, including periodic dark-bright, singular, and periodic singular soliton solutions. The article also presents the necessary constraint conditions for the existence of valid solitons and graphs 2D, 3D, and contour surfaces based on different parameter values.
引用
收藏
页数:12
相关论文
共 56 条
[1]   Stationary optical solitons with nonlinear chromatic dispersion for Lakshmanan-Porsezian-Daniel model having Kerr law of nonlinear refractive index [J].
Adem, Abdullahi Rashid ;
Ntsime, Basetsana Pauline ;
Biswas, Anjan ;
Khan, Salam ;
Alzahrani, Abdullah Khamis ;
Belic, Milivoj R. .
UKRAINIAN JOURNAL OF PHYSICAL OPTICS, 2021, 22 (02) :83-86
[2]   New solutions of the soliton type of shallow water waves and superconductivity models [J].
Akbar, M. Ali ;
Abdullah, Farah Aini ;
Islam, Md. Tarikul ;
Sharif, Mohammed A. Al ;
Osman, M. S. .
RESULTS IN PHYSICS, 2023, 44
[3]   Optical solitons having anti-cubic nonlinearity with a couple of exotic integration schemes [J].
Al-Ghafri, K. S. ;
Krishnan, E. V. ;
Biswas, Anjan ;
Ekici, Mehmet .
OPTIK, 2018, 172 :794-800
[4]  
Ali K, 2023, Commun. Theor. Phys.
[5]   Consistent solitons in the plasma and optical fiber for complex Hirota-dynamical model [J].
Ali, Karmina K. ;
Tarla, Sibel ;
Ali, Mohamed R. ;
Yusuf, Abdullahi ;
Yilmazer, Resat .
RESULTS IN PHYSICS, 2023, 47
[6]   Modulation instability analysis and optical solutions of an extended (2+1)-dimensional perturbed nonlinear Schrodinger equation [J].
Ali, Karmina K. ;
Tarla, Sibel ;
Ali, Mohamed R. ;
Yusuf, Abdullahi .
RESULTS IN PHYSICS, 2023, 45
[7]   The ion sound and Langmuir waves dynamical system via computational modified generalized exponential rational function [J].
Ali, Karmina K. ;
Yokus, Asif ;
Seadawy, Aly R. ;
Yilmazer, Resat .
CHAOS SOLITONS & FRACTALS, 2022, 161
[8]   M-lump solutions and interactions phenomena for the (2+1)-dimensional KdV equation with constant and time-dependent coefficients [J].
Ali, Karmina K. ;
Yilmazer, Resat .
CHINESE JOURNAL OF PHYSICS, 2022, 77 :2189-2200
[9]   Modulation instability analysis and analytical solutions to the system of equations for the ion sound and Langmuir waves [J].
Ali, Karmina K. ;
Yilmazer, R. ;
Baskonus, H. M. ;
Bulut, H. .
PHYSICA SCRIPTA, 2020, 95 (06)
[10]   On the New Wave Behaviors of the Gilson-Pickering Equation [J].
Ali, Karmina K. ;
Dutta, Hemen ;
Yilmazer, Resat ;
Noeiaghdam, Samad .
FRONTIERS IN PHYSICS, 2020, 8