On the Connection Between Global Centers and Global Injectivity in the Plane

被引:3
作者
Braun, Francisco [1 ]
Llibre, Jaume [2 ]
机构
[1] Univ Fed Sao Carlos, Dept Matemat, BR-13565905 Sao Carlos, SP, Brazil
[2] Univ Autonoma Barcelona, Dept Matemat, Barcelona 08193, Catalonia, Spain
基金
巴西圣保罗研究基金会;
关键词
Centers; Global injectivity; Real Jacobian conjecture; ISOCHRONICITY;
D O I
10.1007/s12591-023-00630-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note we revisit a result of Sabatini relating global injectivity of polynomial maps to global centers in the plane. We deliver a generalization of this result for C-2 maps defined on connected sets. The shape of the image is taking into account. Here we do not use Hadamard's invertibility theorem.
引用
收藏
页码:71 / 79
页数:9
相关论文
共 10 条
[1]  
[Anonymous], 1998, MATHEMATICHE
[2]  
BIALYNICKIBIRULA A, 1962, P AM MATH SOC, V13, P200, DOI DOI 10.1090/S0002-9939-1962-0140516-50107.14602
[3]   A sufficient condition in order that the real Jacobian conjecture in R2 holds [J].
Braun, Francisco ;
Gine, Jaume ;
Llibre, Jaume .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (06) :5250-5258
[4]   The asymptotic variety of a Pinchuk map as a polynomial curve [J].
Campbell, L. Andrew .
APPLIED MATHEMATICS LETTERS, 2011, 24 (01) :62-65
[5]   Isochronicity for several classes of Hamiltonian systems [J].
Cima, A ;
Manosas, F ;
Villadelprat, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 157 (02) :373-413
[6]  
Dumortier F, 2006, UNIVERSITEXT, P1
[7]   Isochronicity of plane polynomial Hamiltonian systems [J].
Gavrilov, L .
NONLINEARITY, 1997, 10 (02) :433-448
[8]   Area-preserving normalizations for centers of planar Hamiltonian systems [J].
Mañosas, F ;
Villadelprat, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 179 (02) :625-646
[9]   A connection between isochronous Hamiltonian centres and the Jacobian Conjecture [J].
Sabatini, M .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 34 (06) :829-838
[10]  
Sabatini M., 2001, ANN POL MATH, V76, P159, DOI DOI 10.4064/AP76-1-16