Fuzzy-based weighting long short-term memory network for demand forecasting

被引:2
|
作者
Imani, Maryam [1 ]
机构
[1] Tarbiat Modares Univ, Fac Elect & Comp Engn, Tehran, Iran
关键词
Fuzzy logic; LSTM; Load forecasting; Weather conditions; LOAD; ALGORITHM;
D O I
10.1007/s11227-022-04659-1
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
One of the main challenges in short-term electrical load forecasting is extraction of nonlinear relationships and complex dependencies among different time instances of the load time series. To deal with this difficulty, a hybrid forecasting method is proposed in this paper that uses the fuzzy expert systems and deep learning methods. In the first step, dependency of previous time instances to the next instance to be load forecasted is achieved through a fuzzy system with 125 rules. Then, the obtained weights are used beside the actual load values as the input of a long short-term memory network for load forecasting. The obtained results on two popular datasets show the superior performance of the proposed method in terms of various evaluation measures.
引用
收藏
页码:435 / 460
页数:26
相关论文
共 50 条
  • [31] Short-Term Forecasting COVID-19 Cases In Turkey Using Long Short -Term Memory Network
    Helli, Selahattin Serdar
    Demirci, Cagkan
    Coban, Onur
    Hamamci, Andac
    2020 MEDICAL TECHNOLOGIES CONGRESS (TIPTEKNO), 2020,
  • [32] Bi-directional long short-term memory method based on attention mechanism and rolling update for short-term load forecasting
    Wang, Shouxiang
    Wang, Xuan
    Wang, Shaomin
    Wang, Dan
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2019, 109 : 470 - 479
  • [33] Long Short-Term Memory Neural Network for Ionospheric Total Electron Content Forecasting Over China
    Xiong, Pan
    Zhai, Dulin
    Long, Cheng
    Zhou, Huiyu
    Zhang, Xuemin
    Shen, Xuhui
    SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS, 2021, 19 (04):
  • [34] A Multivariate Long Short-Term Memory Neural Network for Coalbed Methane Production Forecasting
    Xu, Xijie
    Rui, Xiaoping
    Fan, Yonglei
    Yu, Tian
    Ju, Yiwen
    SYMMETRY-BASEL, 2020, 12 (12): : 1 - 15
  • [35] An improved long short-term memory network for streamflow forecasting in the upper Yangtze River
    Shuang Zhu
    Xiangang Luo
    Xiaohui Yuan
    Zhanya Xu
    Stochastic Environmental Research and Risk Assessment, 2020, 34 : 1313 - 1329
  • [36] Reduction in Sensor Response Time using Long Short-Term Memory Network Forecasting
    Ward, Simon J.
    Weiss, Sharon M.
    APPLICATIONS OF MACHINE LEARNING 2023, 2023, 12675
  • [37] Designing a long short-term network for short-term forecasting of global horizontal irradiance
    Malakar, Sourav
    Goswami, Saptarsi
    Ganguli, Bhaswati
    Chakrabarti, Amlan
    Sen Roy, Sugata
    Boopathi, K.
    Rangaraj, A. G.
    SN APPLIED SCIENCES, 2021, 3 (04):
  • [38] Fractional-order long short-term memory network for forecasting of solar irradiance
    Ramadevi, Bhukya
    Zafirah, Nur Dhaifina
    Bingi, Kishore
    Omar, Madiah
    Prusty, B. Rajanarayan
    ENGINEERING RESEARCH EXPRESS, 2024, 6 (04):
  • [39] Designing a long short-term network for short-term forecasting of global horizontal irradiance
    Sourav Malakar
    Saptarsi Goswami
    Bhaswati Ganguli
    Amlan Chakrabarti
    Sugata Sen Roy
    K. Boopathi
    A. G. Rangaraj
    SN Applied Sciences, 2021, 3
  • [40] A fuzzy inference neural network based method for short-term load forecasting
    Mori, H
    Itagaki, T
    2004 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, PROCEEDINGS, 2004, : 2403 - 2406