Fuzzy-based weighting long short-term memory network for demand forecasting

被引:2
|
作者
Imani, Maryam [1 ]
机构
[1] Tarbiat Modares Univ, Fac Elect & Comp Engn, Tehran, Iran
关键词
Fuzzy logic; LSTM; Load forecasting; Weather conditions; LOAD; ALGORITHM;
D O I
10.1007/s11227-022-04659-1
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
One of the main challenges in short-term electrical load forecasting is extraction of nonlinear relationships and complex dependencies among different time instances of the load time series. To deal with this difficulty, a hybrid forecasting method is proposed in this paper that uses the fuzzy expert systems and deep learning methods. In the first step, dependency of previous time instances to the next instance to be load forecasted is achieved through a fuzzy system with 125 rules. Then, the obtained weights are used beside the actual load values as the input of a long short-term memory network for load forecasting. The obtained results on two popular datasets show the superior performance of the proposed method in terms of various evaluation measures.
引用
收藏
页码:435 / 460
页数:26
相关论文
共 50 条
  • [21] Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model
    Zhang, Jinhua
    Yan, Jie
    Infield, David
    Liu, Yongqian
    Lien, Fue-sang
    APPLIED ENERGY, 2019, 241 : 229 - 244
  • [22] A hybrid model based on bidirectional long short-term memory neural network and Catboost for short-term electricity spot price forecasting
    Zhang, Fan
    Fleyeh, Hasan
    Bales, Chris
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2022, 73 (02) : 301 - 325
  • [23] Optimized Deep Stacked Long Short-Term Memory Network for Long-Term Load Forecasting
    Farrag, Tamer Ahmed
    Elattar, Ehab E.
    IEEE ACCESS, 2021, 9 : 68511 - 68522
  • [24] Regional Logistics Demand Prediction: A Long Short-Term Memory Network Method
    Li, Ya
    Wei, Zhanguo
    SUSTAINABILITY, 2022, 14 (20)
  • [25] Forecasting Short-Term Passenger Flow of Subway Stations Based on the Temporal Pattern Attention Mechanism and the Long Short-Term Memory Network
    Wei, Lingxiang
    Guo, Dongjun
    Chen, Zhilong
    Yang, Jincheng
    Feng, Tianliu
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2023, 12 (01)
  • [26] Application of long short-term memory (LSTM) neural network based on deep learning for electricity energy consumption forecasting
    Bilgili, Mehmet
    Arslan, Niyazi
    Sekertekin, Aliihsan
    Yasar, Abdulkadir
    TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2022, 30 (01) : 140 - 157
  • [27] Short-Term Forecasting of Hourly Electricity Power Demand Reggresion and Cluster Methods for Short-Term Prognosis
    Filipova-Petrakieva, Simona
    Dochev, Vencislav
    ENGINEERING TECHNOLOGY & APPLIED SCIENCE RESEARCH, 2022, 12 (02) : 8374 - 8381
  • [28] Hybrid long short-term memory and bidirectional multichannel network cascaded with split convolution for short-term load forecasting
    Hasanat, Syed Muhammad
    Ullah, Irshad
    Aurangzeb, Khursheed
    Rizwan, Muhammad
    Alhussein, Musaed
    Anwar, Muhammad Shahid
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 147
  • [29] A Forecasting Framework Based on GM(1,1) Model and Long Short-Term Memory Network
    Li, Le
    Hou, Gongyu
    Quan, Xiaoge
    Yang, Yajie
    Ma, Xiaoyun
    Liu, Wei
    JOURNAL OF GREY SYSTEM, 2020, 32 (01) : 78 - 89
  • [30] Short-Term Load Forecasting Based on Wavelet Transform and Chaotic Bat Optimization Algorithm-Long Short-Term Memory Neural Network
    Ding, Bin
    Wang, Fan
    Chen, Zhenhua
    Wang, Shizhao
    JOURNAL OF NANOELECTRONICS AND OPTOELECTRONICS, 2022, 17 (12) : 1611 - 1615