Tight lower bounds on the convergence rate of primal-dual dynamics for equality constrained convex problems

被引:2
作者
Ozaslan, Ibrahim K. [1 ]
Jovanovic, Mihailo R. [1 ]
机构
[1] Univ Southern Calif, Ming Hsieh Dept Elect & Comp Engn, Los Angeles, CA 90089 USA
来源
2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC | 2023年
关键词
Convex optimization; exponential stability; gradient flow dynamics; primal-dual methods; SADDLE-POINT DYNAMICS; STABILITY; OPTIMIZATION;
D O I
10.1109/CDC49753.2023.10383202
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We study the exponential stability of continuoustime primal-dual gradient flow dynamics for convex optimization problems with linear equality constraints. Without making any assumptions on the rank of the constraint matrix, we obtain a tight lower bound on the worst-case convergence rate for smooth strongly convex objective functions. Our analysis identifies two different convergence regimes depending on the ratio between primal and dual time scales. When the primal time scale is inversely proportional to the Lipschitz parameter of the objective function and the dual time scale is large enough, the convergence rate is inversely proportional to the condition number of the problem. In contrast to the existing results, our lower bound on the convergence rate does not depend on the condition number of the constraint matrix.
引用
收藏
页码:7318 / 7323
页数:6
相关论文
共 29 条
[11]   Stability of primal-dual gradient dynamics and applications to network optimization [J].
Feijer, Diego ;
Paganini, Fernando .
AUTOMATICA, 2010, 46 (12) :1974-1981
[12]   Stability and robustness for saddle-point dynamics through monotone mappings [J].
Goebel, Rafal .
SYSTEMS & CONTROL LETTERS, 2017, 108 :16-22
[13]   Generative Adversarial Networks [J].
Goodfellow, Ian ;
Pouget-Abadie, Jean ;
Mirza, Mehdi ;
Xu, Bing ;
Warde-Farley, David ;
Ozair, Sherjil ;
Courville, Aaron ;
Bengio, Yoshua .
COMMUNICATIONS OF THE ACM, 2020, 63 (11) :139-144
[14]   Fast primal-dual algorithm via dynamical system for a linearly constrained convex optimization problem [J].
He, Xin ;
Hu, Rong ;
Fang, Ya-Ping .
AUTOMATICA, 2022, 146
[15]   CONVERGENCE RATES OF INERTIAL PRIMAL-DUAL DYNAMICAL METHODS FOR SEPARABLE CONVEX OPTIMIZATION PROBLEMS [J].
He, Xin ;
Hu, Rong ;
Fang, Ya Ping .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2021, 59 (05) :3278-3301
[16]  
Heusel M, 2017, ADV NEUR IN, V30
[17]  
Holding T, 2021, IEEE T AUTOMAT CONTR, V66, P2933, DOI 10.1109/TAC.2020.3019375
[18]   Exponential Decay Rate Conditions for Uncertain Linear Systems Using Integral Quadratic Constraints [J].
Hu, Bin ;
Seiler, Peter .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2016, 61 (11) :3631-3637
[19]   ANALYSIS AND DESIGN OF OPTIMIZATION ALGORITHMS VIA INTEGRAL QUADRATIC CONSTRAINTS [J].
Lessard, Laurent ;
Recht, Benjamin ;
Packard, Andrew .
SIAM JOURNAL ON OPTIMIZATION, 2016, 26 (01) :57-95
[20]  
Muehlebach M., 2020, Proceedings of Machine Learning Research, P7088