Developing the novel diagnostic model and potential drugs by integrating bioinformatics and machine learning for aldosterone-producing adenomas

被引:0
作者
Yu, Deshui [1 ,2 ]
Zhang, Jinxuan [1 ,2 ]
Li, Xintao [1 ]
Xiao, Shuwei [1 ]
Xing, Jizhang [1 ]
Li, Jianye [1 ,2 ]
机构
[1] Air Force Med Ctr, Dept Urol, Beijing, Peoples R China
[2] China Med Univ, Shenyang, Peoples R China
关键词
aldosterone-producing adenomas; primary aldosteronism; artificial neural network; machine learning algorithm; potential targeted drugs; MOLECULAR-MECHANISM; SOMATIC MUTATIONS; CHANNEL MUTATIONS; PREVALENCE; PACKAGE; IMPACT; ATP1A1;
D O I
10.3389/fmolb.2023.1308754
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background: Aldosterone-producing adenomas (APA) are a common cause of primary aldosteronism (PA), a clinical syndrome characterized by hypertension and electrolyte disturbances. If untreated, it may lead to serious cardiovascular complications. Therefore, there is an urgent need for potential biomarkers and targeted drugs for the diagnosis and treatment of aldosteronism.Methods: We downloaded two datasets (GSE156931 and GSE60042) from the GEO database and merged them by de-batch effect, then screened the top50 of differential genes using PPI and enriched them, followed by screening the Aldosterone adenoma-related genes (ARGs) in the top50 using three machine learning algorithms. We performed GSEA analysis on the ARGs separately and constructed artificial neural networks based on the ARGs. Finally, the Enrich platform was utilized to identify drugs with potential therapeutic effects on APA by tARGseting the ARGs.Results: We identified 190 differential genes by differential analysis, and then identified the top50 genes by PPI, and the enrichment analysis showed that they were mainly enriched in amino acid metabolic pathways. Then three machine learning algorithms identified five ARGs, namely, SST, RAB3C, PPY, CYP3A4, CDH10, and the ANN constructed on the basis of these five ARGs had better diagnostic effect on APA, in which the AUC of the training set is 1 and the AUC of the validation set is 0.755. And then the Enrich platform identified drugs tARGseting the ARGs with potential therapeutic effects on APA.Conclusion: We identified five ARGs for APA through bioinformatic analysis and constructed Artificial neural network (ANN) based on them with better diagnostic effects, and identified drugs with potential therapeutic effects on APA by tARGseting these ARGs. Our study provides more options for the diagnosis and treatment of APA.
引用
收藏
页数:14
相关论文
共 50 条
[11]   Gene expression inference with deep learning [J].
Chen, Yifei ;
Li, Yi ;
Narayan, Rajiv ;
Subramanian, Aravind ;
Xie, Xiaohui .
BIOINFORMATICS, 2016, 32 (12) :1832-1839
[12]   K+ Channel Mutations in Adrenal Aldosterone-Producing Adenomas and Hereditary Hypertension [J].
Choi, Murim ;
Scholl, Ute I. ;
Yue, Peng ;
Bjoerklund, Peyman ;
Zhao, Bixiao ;
Nelson-Williams, Carol ;
Ji, Weizhen ;
Cho, Yoonsang ;
Patel, Aniruddh ;
Men, Clara J. ;
Lolis, Elias ;
Wisgerhof, Max V. ;
Geller, David S. ;
Mane, Shrikant ;
Hellman, Per ;
Westin, Gunnar ;
Akerstrom, Goran ;
Wang, Wenhui ;
Carling, Tobias ;
Lifton, Richard P. .
SCIENCE, 2011, 331 (6018) :768-772
[13]   A gain-of-function mutation in the CLCN2 chloride channel gene causes primary aldosteronism [J].
Fernandes-Rosa, Fabio L. ;
Daniil, Georgios ;
Orozco, Ian J. ;
Goeppner, Corinna ;
El Zein, Rami ;
Jain, Vandana ;
Boulkroun, Sheerazed ;
Jeunemaitre, Xavier ;
Amar, Laurence ;
Lefebvre, Herve ;
Schwarzmayr, Thomas ;
Strom, Tim M. ;
Jentsch, Thomas J. ;
Zennaro, Maria-Christina .
NATURE GENETICS, 2018, 50 (03) :355-+
[14]   The Management of Primary Aldosteronism: Case Detection, Diagnosis, and Treatment: An Endocrine Society Clinical Practice Guideline [J].
Funder, John W. ;
Carey, Robert M. ;
Mantero, Franco ;
Murad, M. Hassan ;
Reincke, Martin ;
Shibata, Hirotaka ;
Stowasser, Michael ;
Young, William F., Jr. .
JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM, 2016, 101 (05) :1889-1916
[15]   Alterations of type II classical cadherin, cadherin-10 (CDH10), is associated with pancreatic ductal adenocarcinomas [J].
Jinawath, Natini ;
Shiao, Meng-Shin ;
Norris, Alexis ;
Murphy, Kathleen ;
Klein, Alison P. ;
Yonescu, Raluca ;
Iacobuzio-Donahue, Christine ;
Meeker, Alan ;
Jinawath, Artit ;
Yeo, Charles J. ;
Eshleman, James R. ;
Hruban, Ralph H. ;
Brody, Jonathan R. ;
Griffin, Constance A. ;
Harada, Shuko .
GENES CHROMOSOMES & CANCER, 2017, 56 (05) :427-435
[16]   Adjusting batch effects in microarray expression data using empirical Bayes methods [J].
Johnson, W. Evan ;
Li, Cheng ;
Rabinovic, Ariel .
BIOSTATISTICS, 2007, 8 (01) :118-127
[17]   Clinical Translationality of KCNJ5 Mutation in Aldosterone Producing Adenoma [J].
Kitamoto, Takumi ;
Nishikawa, Tetsuo .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (16)
[18]   Evasion of immunosurveillance by genomic alterations of PPARγ/RXRα in bladder cancer [J].
Korpal, Manav ;
Puyang, Xiaoling ;
Wu, Zhenhua Jeremy ;
Seiler, Roland ;
Furman, Craig ;
Oo, Htoo Z. ;
Seiler, Michael ;
Irwin, Sean ;
Subramanian, Vanitha ;
Joshi, Jaya Julie ;
Wang, Chris K. ;
Rimkunas, Victoria ;
Tortora, Davide ;
Yang, Hua ;
Kumar, Namita ;
Kuznetsov, Galina ;
Matijevic, Mark ;
Chow, Jesse ;
Kumar, Pavan ;
Zou, Jian ;
Feala, Jacob ;
Corson, Laura ;
Henry, Ryan ;
Selvaraj, Anand ;
Davis, Allison ;
Bloudoff, Kristjan ;
Douglas, James ;
Kiss, Bernhard ;
Roberts, Morgan ;
Fazli, Ladan ;
Black, Peter C. ;
Fekkes, Peter ;
Smith, Peter G. ;
Warmuth, Markus ;
Yu, Lihua ;
Hao, Ming-Hong ;
Larsen, Nicholas ;
Daugaard, Mads ;
Zhu, Ping .
NATURE COMMUNICATIONS, 2017, 8
[19]   Local Control of Aldosterone Production and Primary Aldosteronism [J].
Lalli, Enzo ;
Barhanin, Jacques ;
Zennaro, Maria-Christina ;
Warth, Richard .
TRENDS IN ENDOCRINOLOGY AND METABOLISM, 2016, 27 (03) :123-131
[20]   Adrenal Venous Sampling With or Without Adrenocorticotropic Hormone Stimulation: A Meta-Analysis [J].
Laurent, Irakoze ;
Astere, Manirakiza ;
Zheng, Fengfan ;
Chen, Xiangjun ;
Yang, Jun ;
Cheng, Qingfeng ;
Li, Qifu .
JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM, 2019, 104 (04) :1060-1068