Automated Stroke Lesion Segmentation in Rat Brain MR Images Using an Encoder-Decoder Framework

被引:0
作者
Chang, Herng-Hua [1 ]
Yeh, Shin-Joe [2 ,3 ]
Chiang, Ming-Chang [4 ]
Hsieh, Sung-Tsang [2 ,3 ]
机构
[1] Natl Taiwan Univ, Dept Engn Sci & Ocean Engn, Computat Biomed Engn Lab CBEL, Taipei, Taiwan
[2] Natl Taiwan Univ Hosp, Dept Neurol, Taipei, Taiwan
[3] Natl Taiwan Univ Hosp, Stroke Ctr, Taipei, Taiwan
[4] Natl Yang Ming Chiao Tung Univ, Dept Biomed Engn, Taipei, Taiwan
来源
2023 45TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY, EMBC | 2023年
关键词
MODELS;
D O I
10.1109/EMBC40787.2023.10340278
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Stroke is a leading cause of serious long-term disability and the major cause of mortality worldwide. Experimental ischemic stroke models play an important role in realizing the mechanism of cerebral ischemia and evaluating the development of pathological extent. An accurate and reliable image segmentation tool to automatically identify the stroke lesion is important in the subsequent processes. However, the intensity distribution of the infarct region in the diffusion weighted imaging (DWI) images is usually nonuniform with blurred boundaries. A deep learning-based infarct region segmentation framework is developed in this paper to address the segmentation difficulties. The proposed solution is an encoder-decoder network that includes a hybrid block model for efficient multiscale feature extraction. An in-house DWI image dataset was created to evaluate this automated stroke lesion segmentation scheme. Through massive experiments, accurate segmentation results were obtained, which outperformed many competitive methods both qualitatively and quantitatively. Our stroke lesion segmentation system is potential in providing a decent tool to facilitate preclinical stroke investigation using DWI images.
引用
收藏
页数:4
相关论文
共 16 条
[1]  
[Anonymous], 2015, International Journal of Pharma Medicine and Biological Sciences
[2]   MDAN: Mirror Difference Aware Network for Brain Stroke Lesion Segmentation [J].
Bao, Qiqi ;
Mi, Shiyu ;
Gang, Bowen ;
Yang, Wenming ;
Chen, Jie ;
Liao, Qingmin .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2022, 26 (04) :1628-1639
[3]   Automatic segmentation of cerebral infarcts in follow-up computed tomography images with convolutional neural networks [J].
Barros, Renan Sales ;
Tolhuisen, Manon L. ;
Boers, Anna ;
Jansen, Ivo ;
Ponomareva, Elena ;
Dippel, Diederik W. J. ;
van der Lugt, Aad ;
van Oostenbrugge, Robert J. ;
van Zwam, Wim H. ;
Berkhemer, Olvert A. ;
Goyal, Mayank ;
Demchuk, Andrew M. ;
Menon, Bijoy K. ;
Mitchell, Peter ;
Hill, Michael D. ;
Jovin, Tudor G. ;
Davalos, Antoni ;
Campbell, Bruce C., V ;
Saver, Jeffrey L. ;
Roos, Yvo B. W. E. M. ;
Muir, Keith W. ;
White, Phil ;
Bracard, Serge ;
Guillemin, Francis ;
Olabarriaga, Silvia Delgado ;
Majoie, Charles B. L. M. ;
Marquering, Henk A. .
JOURNAL OF NEUROINTERVENTIONAL SURGERY, 2020, 12 (09) :848-+
[4]   A novel voxel-wise lesion segmentation technique on 3.0-T diffusion MRI of hyperacute focal cerebral ischemia at 1h after permanent MCAO in rats [J].
Choi, Chi-Hoon ;
Yi, Kyung Sik ;
Lee, Sang-Rae ;
Lee, Youngjeon ;
Jeon, Chang-Yeop ;
Hwang, Jinwoo ;
Lee, Chulhyun ;
Choi, Sung Sik ;
Lee, Hong Jun ;
Cha, Sang-Hoon .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2018, 38 (08) :1371-1383
[5]   Animal models of ischemic stroke and their application in clinical research [J].
Fluri, Felix ;
Schuhmann, Michael K. ;
Kleinschnitz, Christoph .
DRUG DESIGN DEVELOPMENT AND THERAPY, 2015, 9 :3445-3454
[6]   Res2Net: A New Multi-Scale Backbone Architecture [J].
Gao, Shang-Hua ;
Cheng, Ming-Ming ;
Zhao, Kai ;
Zhang, Xin-Yu ;
Yang, Ming-Hsuan ;
Torr, Philip .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (02) :652-662
[7]   Identity Mappings in Deep Residual Networks [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
COMPUTER VISION - ECCV 2016, PT IV, 2016, 9908 :630-645
[8]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[9]  
Kreyszig E., 2011, Advanced Engineering Mathematics, V10th ed., DOI DOI 10.1002/AIC.690370209
[10]   Preclinical stroke research - advantages and disadvantages of the most common rodent models of focal ischaemia [J].
Macrae, I. M. .
BRITISH JOURNAL OF PHARMACOLOGY, 2011, 164 (04) :1062-1078