A lightweight transformer for faster and robust EBSD data collection

被引:1
作者
Dong, Harry [1 ]
Donegan, Sean [2 ]
Shah, Megna [2 ]
Chi, Yuejie [1 ]
机构
[1] Carnegie Mellon Univ, Dept Elect & Comp Engn, Pittsburgh, PA 15289 USA
[2] Air Force Res Lab, Mat & Mfg Directorate, Wright Patterson AFB, OH 45433 USA
基金
美国安德鲁·梅隆基金会;
关键词
RECONSTRUCTION;
D O I
10.1038/s41598-023-47936-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Three dimensional electron back-scattered diffraction (EBSD) microscopy is a critical tool in many applications in materials science, yet its data quality can fluctuate greatly during the arduous collection process, particularly via serial-sectioning. Fortunately, 3D EBSD data is inherently sequential, opening up the opportunity to use transformers, state-of-the-art deep learning architectures that have made breakthroughs in a plethora of domains, for data processing and recovery. To be more robust to errors and accelerate this 3D EBSD data collection, we introduce a two step method that recovers missing slices in an 3D EBSD volume, using an efficient transformer model and a projection algorithm to process the transformer's outputs. Overcoming the computational and practical hurdles of deep learning with scarce high dimensional data, we train this model using only synthetic 3D EBSD data with self-supervision and obtain superior recovery accuracy on real 3D EBSD data, compared to existing methods.
引用
收藏
页数:13
相关论文
共 45 条
[31]  
Shade PA, 2019, AFRL AM MODELING CHA, DOI DOI 10.18126/K5R2-32IU
[32]   Multi-modal Dataset of a Polycrystalline Metallic Material: 3D Microstructure and Deformation Fields [J].
Stinville, J. C. ;
Hestroffer, J. M. ;
Charpagne, M. A. ;
Polonsky, A. T. ;
Echlin, M. P. ;
Torbet, C. J. ;
Valle, V. ;
Nygren, K. E. ;
Miller, M. P. ;
Klaas, O. ;
Loghin, A. ;
Beyerlein, I. J. ;
Pollock, T. M. .
SCIENTIFIC DATA, 2022, 9 (01)
[33]  
Stinville JC, 2022, Dryad
[34]   Efficient Transformers: A Survey [J].
Tay, Yi ;
Dehghani, Mostafa ;
Bahri, Dara ;
Metzler, Donald .
ACM COMPUTING SURVEYS, 2023, 55 (06)
[35]   Optimizing the cellular automata finite element model for additive manufacturing to simulate large microstructures [J].
Teferra, Kirubel ;
Rowenhorst, David J. .
ACTA MATERIALIA, 2021, 213
[36]  
Touvron H, 2023, Arxiv, DOI [arXiv:2302.13971, DOI 10.48550/ARXIV.2302.13971]
[37]  
Uchic M, 2012, PROCEEDINGS OF THE 1ST INTERNATIONAL CONFERENCE ON 3D MATERIALS SCIENCE, P195
[38]  
Vaswani A, 2017, ADV NEUR IN, V30
[39]   Axial-DeepLab: Stand-Alone Axial-Attention for Panoptic Segmentation [J].
Wang, Huiyu ;
Zhu, Yukun ;
Green, Bradley ;
Adam, Hartwig ;
Yuille, Alan ;
Chen, Liang-Chieh .
COMPUTER VISION - ECCV 2020, PT IV, 2020, 12349 :108-126
[40]  
Wang SN, 2020, Arxiv, DOI arXiv:2006.04768