Graph-Based Android Malware Detection and Categorization through BERT Transformer

被引:4
作者
Simoni, Marco [1 ,2 ]
Saracino, Andrea [3 ]
机构
[1] Univ Roma La Sapienza, Pisa, Italy
[2] CNR, Pisa, Italy
[3] CNR, Ist Informat & Telemat, Pisa, Italy
来源
18TH INTERNATIONAL CONFERENCE ON AVAILABILITY, RELIABILITY & SECURITY, ARES 2023 | 2023年
基金
欧盟地平线“2020”;
关键词
Cybersecurity; Malware; Android; BERT Transformer; API Call Graph;
D O I
10.1145/3600160.3605057
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose a novel approach to Android malware analysis and categorization that leverages the power of BERT (Bidi-rectional Encoder Representations from Transformers) to classify API call sequences generated from Android API Call Graph. By utilizing the API Call Graph, our approach captures the intricate re-lationships and dependencies between API calls, enabling a deeper understanding of the behavior exhibited by Android malware. Our results show that our approach achieves high accuracy in classi-fying API call sequences as malicious or benign and the method provides a promising solution also for categorizing Android mal-ware and can help mitigate the risks posed by malicious Android applications.
引用
收藏
页数:14
相关论文
共 50 条
[21]   Android Malware Detection Based on Informative Syscall Subsequences [J].
Surendran, Roopak ;
Uddin, Md. Meraj ;
Thomas, Tony ;
Pradeep, Gokul .
IEEE ACCESS, 2024, 12 :189180-189190
[22]   Review of Android Malware Detection Based on Deep Learning [J].
Wang, Zhiqiang ;
Liu, Qian ;
Chi, Yaping .
IEEE ACCESS, 2020, 8 :181102-181126
[23]   Decision Tree Based Android Malware Detection System [J].
Utku, Anil ;
Dogru, Ibrahim Alper ;
Akcayol, M. Ali .
2018 26TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2018,
[24]   Android malware detection method based on bytecode image [J].
Yuxin Ding ;
Xiao Zhang ;
Jieke Hu ;
Wenting Xu .
Journal of Ambient Intelligence and Humanized Computing, 2023, 14 :6401-6410
[25]   Analyzing and Detecting Emerging Internet of Things Malware: A Graph-Based Approach [J].
Alasmary, Hisham ;
Khormali, Aminollah ;
Anwar, Afsah ;
Park, Jeman ;
Choi, Jinchun ;
Abusnaina, Ahmed ;
Awad, Amro ;
Nyang, Daehun ;
Mohaisen, Aziz .
IEEE INTERNET OF THINGS JOURNAL, 2019, 6 (05) :8977-8988
[26]   GNNDroid: Graph-Learning Based Malware Detection for Android Apps With Native Code [J].
Xi, Ning ;
Zhang, Yuchen ;
Feng, Pengbin ;
Ma, Siqi ;
Ma, Jianfeng ;
Shen, Yulong ;
Yang, Yale .
IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2025, 22 (02) :1460-1476
[27]   Android Malware Detection Based on Behavioral-Level Features with Graph Convolutional Networks [J].
Xu, Qingling ;
Zhao, Dawei ;
Yang, Shumian ;
Xu, Lijuan ;
Li, Xin .
ELECTRONICS, 2023, 12 (23)
[28]   Instance-based Anomaly Method for Android Malware Detection [J].
Sanz, Borja ;
Santos, Igor ;
Ugarte-Pedrero, Xabier ;
Laorden, Carlos ;
Nieves, Javier ;
Bringas, Pablo G. .
PROCEEDINGS OF THE 10TH INTERNATIONAL CONFERENCE ON SECURITY AND CRYPTOGRAPHY (SECRYPT 2013), 2013, :387-394
[29]   Android malware detection based on static behavior feature analysis [J].
Chen C. ;
Liu Y. ;
Shen B. ;
Cheng J.-J. .
Journal of Computers (Taiwan), 2018, 29 (06) :243-253
[30]   Attack Tree Based Android Malware Detection with Hybrid Analysis [J].
Zhao, Shuai ;
Li, Xiaohong ;
Xu, Guangquan ;
Zhang, Lei ;
Feng, Zhiyong .
2014 IEEE 13TH INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS (TRUSTCOM), 2014, :380-387